
7th International Symposium on Imprecise Probability: Theories and Applications, Innsbruck, Austria, 2011

Building Imprecise Classification Trees With Entropy Ranges

Richard J. Crossman

University of Warwick
r.j.crossman@warwick.ac.uk

Joaquin Abellan

University of Granada
jabellan@decsai.ugr.es

Thomas Augustin

University of Munich
augustin@stat.uni-muenchen.de

Frank P.A. Coolen

Durham University
frank.coolen@dur.ac.uk

Abstract

One method for building classification trees is to
choose split variables by maximising expected en-
tropy. This can be extended through the application
of imprecise probability by replacing instances of ex-
pected entropy with the maximum possible expected
entropy over credal sets of probability distributions.

Such methods may not take full advantage of the op-
portunities offered by imprecise probability theory. In
this paper, we change focus from maximum possible
expected entropy to the full range of expected entropy.
We then choose one or more potential split variables
using an interval comparison method.

This method is presented with specific reference to the
case of ordinal data, and we present algorithms that
maximise and minimise entropy within the credal sets
of probability distributions which are generated by the
NPI method for ordinal data.

Keywords. Imprecise probability, classification
trees, nonparametric predictive inference

1 Introduction

The process of classification can be summarised as
follows. In a data set D each element is described by
n attribute variables (or features) X1, . . . , Xn, and
a single class variable (or variable in study) C. The
variable Xi takes some value ai from the set Ai, and
the variable C takes some value, or category, from C =
{c1, . . . , cK}. The aim is to take a given vector a =
(a1, . . . , an) and determine the associated category.

One such method is the classification tree. This is a
hierarchical graph in which each parent node repre-
sents an attribute variable (called the split variable of
the node), the edges represent the values of that vari-
able, and the leaves represent categories. A data vec-
tor a is categorised by starting at the root node and
following the appropriate edges until a leaf is reached.

The category given at that leaf is the prediction for
the associated category of the data point.

Such a method requires finding an order for consider-
ing the attribute variables. We base our method upon
the one given in [2], summarised as follows:

1. Using information measure IM , calculate IM(R)
and IM(R|Xi) (the information measure follow-
ing splitting on Xi) for each unassigned attribute
variable Xi, where R is the data relevant to the
current node (i.e. the subset of D which matches
the values given to the attribute variables already
assigned);

2. If IM(R|Xi∗) := maxi IM(R|Xi) ≤ IM(R), go
to step 3. Otherwise, split data by the value of
Xi∗ . If the data relevant to the current node
is R, then the relevant data for each child node
will be {v ∈ R|vi∗ = j} where the edge between
this node and the child node is labelled j ∈ Ai∗ .
Return to step 1 for each of these child nodes;

3. This is a leaf node, labelled with the most com-
mon class in R. If more than one class is equally
common, choose the class most common at the
leaf’s parent (this approach is due to [4]).

Step 1 will be adapted to make use of imprecise proba-
bility, but consider first the information measure when
imprecision is not applied. Both IM(R) and each
IM(R|Xi) are functions of an associated probability
distribution. These distributions are estimated us-
ing relative frequencies. For the current data set R,
consider each unassigned attribute variable Xi as fol-
lows. Define nR := |R| and denote by nR

j the number
of data points in R with class cj . Define

pRj :=
nR
j

nR
, pâi

j :=
nâi

j

nâi
(1.1)

where âi := {v ∈ R|Xi = ai}. We also define

I(R,Xi) :=
∑

ai∈Ai

p(Xi = ai)H(pâi) (1.2)

where p(Xi = ai) is also estimated using relative fre-
quencies, and where H(·) is Shannon’s entropy

H(p) = −
n
∑

i=1

pi ln(pi) (1.3)

for probability distribution p. H(p) is maximum
when p is uniform, and minimum when pi = 1 for
some i.

Define an information measure as follows:

IM(R,Xi) := H(pR)− I(R,Xi). (1.4)

Only the I(R,Xi) value determines the next split vari-
able at each node. Further, maximising the infor-
mation measure is equivalent to minimising I(R,Xi),
which in turn requires minimising entropy.

Instead of using the relative frequencies for each Xi

to generate a distribution for the categories, we can
generate a credal set of probabilites, referred to as
a structure. This is done in [2] by using the impre-

cise Dirichlet model (IDM) [12], giving the following
intervals for pâi

j

[

nâi

j

nâi + s
,
nâi

j + s

nâi + s

]

(1.5)

for some value of s, commonly chosen to be 1 or 2.

Alternatives to the IDM exist. In [6] the IDM is
replaced with the NPI method for categorical data
(requiring a modification to the algorithm, which is
contained in that reference). In this paper, the NPI
method for ordinal data [7] replaces the IDM. This
method takes account of the ordering amongst the
categories, resulting (in general) in smaller credal sets
than would otherwise be generated. In this set-up cat-
egories c1 and cK (ci, i = 2, . . . ,K−1) are referred to
as boundary (internal) categories. The corresponding
component in a probability distribution for a category
is referred to as a boundary (internal) component.

A summary of the ordinal NPI method follows. For
X1, . . . , Xn, Xn+1 real-valued absolutely continuous
and exchangeable random quantities, assume that
the first n ordered observed values are denoted by
x1 < x2 < . . . < xn, and let x0 = −∞ and xn+1 = ∞.
We use Hill’s assumption A(n) [8] that for a future ob-
servation Xn+1 and for all j = 1, . . . , n+ 1

P (xn+1 ∈ Ij = (xj−1, xj)) =
1

n+ 1
. (1.6)

A(n) assumes nothing else, and can be used to define
a lower (upper) probability vector L (U) for the cate-
gory of Xn+1 by a latent variable representation. As-
sume n observations, with nj in category cj . Let Yn+1

denote the random quantity representing the cate-
gory a future observation will belong to. We assume
that category cj is represented by interval Icj , where
∪j=1,...,kIcj = R and Icj ∩ Ici = ∅ for all i 6= j. The
ordering is such that Icj has neighbouring intervals
Icj−1 to the left and Icj+1 to the right on the real line,
with only one such neighbour when j ∈ {1, k}. As-
sume further that nj values of x1 < x2 < . . . < xn are
in interval Icj . We therefore assume that the event
Xn+1 ∈ Icj is equivalent to the event Yn+1 = cj . See
[7] for more detail.

The lower probability of a category ci is therefore
equal to the number of intervals Ij entirely contained
within Ici, and the upper probability of that cate-
gory is equal to the number of intervals Ij with a
non-empty intersection with Ici. Hence, the ordinal
NPI model replaces (1.5) with:

[

max(
nâi

j − 1

nâi + 1
, 0),

nâi

j + 1

nâi + 1

]

(1.7)

when 1 < j < K, and otherwise
[

nâi

j

nâi + 1
,
nâi

j + 1

nâi + 1

]

. (1.8)

Therefore all intervals Ij lying entirely within an in-
terval Ici are assigned to category ci, and intervals
overlapping both Ici and Ici+1 can be assigned en-
tirely to either ci or ci+1, or split between them.

We can thus talk about the probability mass “on ei-
ther side” of categories. From this point on the avail-
able mass to the left (right) of internal category cj
is defined as the probabilty mass that has not been
assigned to cj or cj−1 (cj+1) whilst calculating the
lower probabilities Lj and Lj−1 (Lj+1). This mass is
therefore described as being available to p̂j and p̂j−1

(p̂j+1). Any distribution p̂ within the ordinal NPI
structure has the property p̂j ≥ Lj ; p̂j − Lj is de-
scribed as the mass assigned to p̂j .

When using either IDM or ordinal NPI, we take
the category distribution from each credal set that
maximises entropy (note that the distributions of at-
tribute variables are still generated using relative fre-
quencies). This will generate a maximum expected
value of each I(R,Xi) and of H(pR), and so deter-
mine our next split variable. However, for K > 2 the
algorithm given in [2] for maximising entropy does not
work within the structure of ordinal NPI (see Section
4), necessitating the algorithm described in this pa-
per.

Once all possible values of (1.4) are non-positive, we
do not split further, and decide on the class value to
assign by choosing the most common class in R, just
as is done in the case without imprecise probability.

However, this application of the IDM or ordinal NPI
excludes one of the most fundamental justifications
for using imprecise probability: the possibility of cir-
cumstances in which we are unable to choose between
two options. We therefore describe an alternative
method in this paper, which rather than compar-
ing maximum entropies compares the ranges of en-
tropies, and chooses between those ranges only when
our method for comparing intervals allows it.

Section 2 defines and explores entropy intervals, which
are then used to describe our method, given in Section
3. Section 4 and 5 describe the algorithms by which
entropy over the ordinal NPI structure is maximised
and minimised, respectively. Section 6 contains con-
clusions and ideas for future work.

2 Entropy Intervals

Considering entropy intervals requires the following
two definitions.

Definition 2.1 For a closed structure M, a vector is
defined as a potential of M, denoted v∗, if v∗ ∈ M
and

H(v∗) = max
w∈M

H(w). (2.1)

A vector is defined as the guarantee of M, denoted
v∗, if v∗ ∈ M and

H(v∗) = min
w∈M

H(w). (2.2)

If 1
k
(1, . . . , 1) ∈ M, then v∗ = 1

k
(1, . . . , 1). Any prob-

ability vector in M with a component equal to 1 is a
guarantee of M.

The names of these properties are justified as follows:
for a givenXi the entropy of the potential and guaran-
tee generate respectively the maximum and minimum
value of I(R,Xi). Thus we can guarantee a minimum
value for this function, but also talk of the potential
maximum. This is also true for H(pR).

In a convex structure, the potential is unique (see the
algorithm in [2]). This is not necessarily true of the
guarantee; when M = [0, 1] × [0, 1], both (1, 0) and
(0, 1) are guarantees.

Because entropy is a continuous function, and the or-
dinal NPI structure is connected, we can define an
entropy interval as follows.

Definition 2.2 The entropy interval of a connected
structure M is defined as

{H(v) : v ∈ M} = [H(v∗), H(v∗)]

where v∗ and v∗ are the guarantee and the potential
of M respectively.

Example 4.1 Consider K = 8 classes, and six ob-
servations (1,0,0,2,0,3,0,0). From [7] we have that the
structure is contained within the following set:

1

7
([1, 2], [0, 1], [0, 1], [1, 3], [0, 1], [2, 4], [0, 1], [0, 1]).

(2.3)
The maximum entropy algorithm adapted for ordinal
data (see Section 4) gives the following vectors at each
stage

1.
1

7
(1, 0, 0, 1, 0, 2, 0, 0), 2.

1

7
(1, 0, 0, 1, 1, 2, 0, 0)

3.
1

14
(2, 1, 1, 2, 2, 4, 0, 0), 4.

1

14
(2, 1, 1, 2, 2, 4, 1, 1)

and the minimum entropy algorithm (see Section 5) gives

1.
1

7
(1, 0, 0, 1, 0, 2, 0, 0), 2.

1

7
(1, 0, 0, 1, 0, 4, 0, 0)

3.
1

7
(2, 0, 0, 1, 0, 4, 0, 0)

The resulting entropy interval is [0.9557, 1.9459]. For
comparison, note that the full entropy range for an 8
element probability distribution is [0, 2.079], and that
had we used the algorithm given in [2] without taking
into account the structure of the model, we would have
incorrectly generated a potential with entropy 1.9668.
This concludes the example.

Instead of a single value I(R,Xi), consider an in-
terval [I(R,Xi), I(R,Xi)] := Ii where the bounds of the
interval are calculated using guarantees and potentials
in the obvious way. Further, replace H(pR) with the
interval IR, generated by the guarantee and potential of
the current data set R.

These intervals provide an alternative method for choos-
ing the split variables. Define a set of intervals I =
{Ia1

, . . . , Ian}, where each ai corresponds to a potential
split variable Xai

. Remove from I any interval that is
dominated by another interval in the set. There are vari-
ous methods by which one can determine dominance, but
in this paper we use the simplest: interval dominance.
Under this method, interval Ii = [ci, di] dominates inter-
val Ij = [cj , dj], denoted Ii >d Ij , iff ci ≥ dj . The use
of alternative methods for comparing intervals [11] can be
explored, this is left as a topic for future research.

Once all dominated intervals have been removed, we say
we cannot choose between each of variables corresponding
to the remaining elements of I as the next choice for the
split variable.

3 Imprecise classification trees

Just as imprecise probabilities are expressed as sets rather
than single values, an imprecise classification tree is ex-
pressed as a forest.

Consider node P at the end of a path, length l, from
the root node. There are n − l choices for the next split
variable, denoted XP1

,XP2
, . . . , XPn−l

. If no interval IPj

dominates IR, then there is no split (as no split variable
can be considered superior to no split at all). Otherwise,
create a set S as follows

S := {XPj
|∃ no i 6= j s.t. IPi

>d IPj
}. (3.1)

Therefore S is the set of all potential split variables for
which a superior choice of split variable cannot be found.
Let m := |S|. We create m − 1 identical copies of the
current tree. This produces m trees, each of which uses
a different split variable, chosen from S to continue the
current path.

If it is determined that no split variable is preferable to
not splitting, the node becomes a leaf. The method in
[2] uses the relative frequency of the current data set to
choose the most likely category (if two or more categories
are equally likely, the most likely category at the parent
node is chosen). One alternative would be to use the NPI
method for ordinal data to construct a structure for the
category probabilities.

A method by which the structures of the trees can be com-
bined is now required. All trees should not be given equal
weight, or some choices for split variables may dominate
others. For example, consider three Boolean attribute
variables X1,X2,X3. Variables X1 and X2 are chosen
for the initial split, so Xi is chosen as the root node for
Tree i, with i = 1, 2. In Tree 1, whatever the value of X1,
we split on X2 next. In Tree 2, when X2 = 0, we split
on X1 next, but when X2 = 1, we cannot choose between
splitting next on X1 or X3. Therefore Tree 2 splits upon
X1, and a new tree is generated, Tree 3, which splits upon
X3. No further splits are made (see Figure 1).

Giving each of these three trees equal weight would imply
that the initial choice of X2 is twice as desirable as the
choice of X1. There is no justification for this.

There are various ways to tackle this issue. We could
weight each tree according to the nature of its relevant
entropy interval: how wide it is, and how far it lies from
the interval for the full data set which it is dominating.
For now, however, each tree is given weight one, which
decreases each time there is a split after the root node. In
the situation shown in Figure 1, Tree 1 would be given a
weight of 1, and Trees 2 and 3 a weight of 1

2
each, ensur-

ing each choice of root node is given equal weight. This
method is equivalent to creating duplicate trees. For ex-
ample, in the situation shown in Figure 1, rather than
weight each tree, Tree 1 could be duplicated.

There are many potential methods by which such a forest
can be used to classify a data point. Denote by X the
set of all categorisations given by the forest. The most
conservative approach would be to simply return X , mak-
ing the imprecise tree a credal classifier (see e.g. [13]).
Alternatively, for each ci we can sum the weights of the
trees which returned ci, denoted Σi and choose c∗ where
Σ∗ = maxi Σi, selecting randomly amongst all categories
for which Σi = Σ∗ if the maximum is non-unique. A third
option is to return each category ci for which Σi ≥ C, for
some constant C. Setting C = 0 (C = Σ∗) reduces to the

first (second) method. These approaches will be compared
in a later paper.

Figure 1: Forest generated by this method

Example 5.1 A small table of data, shown in Table 2, is
used to draw an imprecise classification tree. Note that
this example is included to illustrate our method, not to
consider its efficacy. Indeed, the binary categories in this
data set are categorical, not ordinal. Since K = 2, we
can use the maximum entropy algorithm given in [2] (see
Section 5 for the minimum entropy algorithm). We use
the first forty data points as a training set, and the final
ten as a test set. The binary nature of the category set
makes it easy to calculate entropies:

H(v) = −
nR
1

a
ln(

nR
1

a
)−

nR
2

a
ln(

nR
2

a
) (3.2)

where nR
i is the number of instances of category i and

a := nR
1 + nR

2 .

The method generates three trees, displayed in Figures 3
to 5. Tree 1 has weight 1, the others have weight 1

2
. Each

leaf is labelled with the category assigned to it. Note that
it appears in some cases that the set of possible values
of the attribute variables changes from tree to tree. This
is because, depending on previous attribute variables, the
set of data R under consideration may not contain any
instances of one or more values of the variable chosen as
the split variable.

It is simple to compare this method with the one given in
[2], as that method generates only one tree, which is in fact
Tree 2. Tree 2 is correct 8 times out of 10. The imprecise
tree is correct every time, though it returns both categories
on two occasions; this is true irrespective of the choice of
C. There is a one-to-one correspondence between the data
points incorrectly classified by Tree 2, and the data points
for which the imprecise tree gives both categories.

4 Maximum entropy algorithm

In this section the algorithm in [2] is adapted for the ordi-
nal NPI method. We will provide an example later in the
section demonstrating why that algorithm cannot be ap-
plied to the ordinal NPI case directly, but in short, it fails
because it requires that the structure be convex, which is
not the case here.

Our algorithm is too complex to be described in full, in-
stead an overview is presented, including the relevant lem-
mas and proofs. This complexity is required despite the

fact that the structure and the function to be maximised
are both simple in form, because the constraints upon the
maximisation problem are complicated by the conditions
imposed by the ordinal NPI approach. For example, whilst
we have that Li ≤ pi ≤ Ui and Li+1 ≤ pi+1 ≤ Ui+1,
we also have that Li + Li+1 + 1

n+1
≤ pi + pi+1 ≤

Ui + Ui+1 − 1
n+1

. Moreoever, the sum of three adjacent
elements will have its own constraints, and so on.

Maximum Entropy Algorithm

This algorithm is broadly similar to one presented
in [6], which utilises NPI for the categorical case. Our
consideration of the probability mass being available “on
either side” of a component is based on the approach in
that reference.

The algorithm requires two K-vectors vL := (0, 1, . . . , 1)
and vR := (1, . . . , 1, 0). The j-th component of vL (vR)
represents the amount of mass available to p̂j to the left
(right). These vectors are updated after each mass assign-
ment.

The algorithm can be broken down into two processes.
The first process assigns the mass between two compo-
nents in situations in which only those two components
need be considered. For example, for j ∈ {1, . . . ,K − 2},
let

|p̂j − p̂j−1| ≥
2

n+ 1
, (4.1)

and assume without loss of generality (WLOG) that p̂j >
p̂j−1. The convex nature of the entropy function means
entropy is maximised by adding mass to the smallest com-
ponents of p̂ possible. Even if all mass to the left of cj−1

is assigned to p̂j−1, then that component will be no larger
than p̂j −

1
n+1

. This means we must assign all mass be-
tween cj and cj−1 to p̂j−1. An exception is the case where
nj−1 = nj−2 = 0. In this case we cannot be sure that as-
signing all mass to p̂j−1 is justified. We do however know
that no mass to the right of cj can be assigned to p̂j . An
extension of this argument can be applied to the boundary
components and their neighbours.

Further, if there exists any adjacent components for which
|p̂j − p̂j−1| =

1
n+1

, vRj−1 and vLj are non-zero, there may
be another assignment to be made. If we assume WLOG
that p̂j−1 < p̂j , then if vLj−1 = 0, we must assign the mass
between cj and cj−1 to p̂j−1. Again, in situations with
consecutive categories with zero observations, we may at
this stage be only able to decide that some components
cannot be assigned available mass, without being able to
decide which components should be assigned that mass.
Lastly, if p̂j = p̂j−1 = 0 and vRj = vLj−1 = 0, the mass is
shared equally between the components.

The second process can consider three or more compo-
nents simultaneously, using the concept of strings.

Definition 4.1 The categories ca, ca+1, . . . , cb form a
string if vRj +vLj > 0 for all a ≤ j ≤ b and further vRa−1 = 0
when ca 6= c1 and vLb+1 = 0 when cb 6= cK .

We define S := {ca, ca+1, . . . , cb}, and refer to the vector
(p̂a, p̂a+1, . . . , p̂b) as the string vector. The length of a

string equals the number of classes in the string.

The algorithm finds a string within the vector p̂ (which
might be the entire vector), assigns mass to either reduce
the length of the string or split it in two, and then finds
another string, until none remain. By definition there can-
not be more than [K

2
] strings, each of maximum length K,

so the number of iterations required to assign all available
mass must be less than K(K+1)

2
.

The algorithm makes use of the following result.

Lemma 4.1 Let {c1, . . . , cK} contain the set of strings
ζ := {Si, i = 1, . . . , r}. String Si has length li and con-
tains categories cai

to cbi ; ai+1 > bi. Categories with their
mass assignments already determined will belong to no Si.
The vector maximising entropy in the structure is uniquely
determined by the vector maximising entropy over ζ. Let
wi represent the observations (nai

, . . . , nbi). Consider w
i

as a complete observation vector, and generate vi as the
corresponding vector maximising entropy. Entropy over
ζ is maximised by the vector d(t1v

1, t2v
2, . . . , trv

r) for
ti =

li+1
K+1

and normalising constant d.

Proof.

H(p̂) = −

K∑

j=1

p̂j ln(p̂j) = −
∑

j:cj∈ζ

p̂j ln(p̂j) + C

where C = −
∑

j:cj /∈ζ p̂j ln(p̂j) is constant. There-

fore maximising H(p̂) is equivalent to maximising
−
∑

j:cj∈ζ p̂j ln(p̂j). Moreover, when considering the max-

imum algorithm for S̃i,

H(p̂)

m
+

ln(m)

m
= −

li∑

k=1

(
p̂k
m

(ln(p̂k)− ln(m)))

= −

li∑

k=1

(
p̂k
m

(ln(
p̂k
m

)))

= H(
p̂

m
) (4.2)

where m > 0 is constant. The final expression in (4.2) is
a slight abuse of notation, since entropy is generally only
considered in terms of probability distributions, but there
is no mathematical problem with considering it as a func-
tion over all li-vectors with non-negative elements. We
define by V i

a the set of all li-vectors with non-negative ele-
ments which sum to a (hence V K

1 is the set of all possible
probability distributions over the categories), and define
by HSi

the contribution to the overall entropy supplied by
the string Si. This means that 4.2 leads to

H(v∗) = max
v∈V i

1

H(v) = ti(max
v∈V i

t
−1

i

H(v))− ln(ti)

= ti(H(
v∗

ti
))− ln(ti) (4.3)

so the vector which maximises entropy over S̃i is a positive
multiple of the vector which maximises the contribution

of string Si to the whole vector. Hence

maxH(p) = max(−
∑

j:cj∈ζ

pj ln(pj)) +C

=

r∑

i

(ti(max
v∈V i

t
−1

i

HSi
(v))− ln(ti)) + C2

=

r∑

i

ti(max
v∈V i

t
−1

i

HSi
(v)) + C

=
r∑

i

ti(HSi
(vi)) + C2 (4.4)

where the inclusion of the ti is justified by the need to
rescale each vector vi, and C2 is constant. This completes
the proof. 2

From Lemma 4.1 each string can be considered inde-
pendently, as though its corresponding observation vec-
tor was the only one under consideration, with cai

and
cbi as boundary categories. Let x1 := minj∈S p̂j and
x2 := maxj∈S p̂j . In each case, a mass assignment is made
and the vectors vL and vR are updated accordingly.

There are nine different types of string, all of which the al-
gorithm deals with differently. A full description of these
methods will be presented in a later paper; the meth-
ods described below are by no means exhaustive and are
merely intended as a demonstration of the ideas involved.

We aim to ensure the components of a string are as close
to being equal as is possible. If x2 > x1 + 1

n+1
, equality

is impossible. However, in this case we can denote by y1
and y2 > y1 the smallest integers for which p̂y1 ∈ {x1, x2},
y2 = I[p̂y1=x2]x1+I[p̂y1=x1]x2, and for which p̂j /∈ {x1, x2}
for all y1 < j < y2 (where IA is the indicator function).
We have that min(p̂y1 , p̂y2) = x1 and max(p̂y1 , p̂y2) = x2.
Moreover, for any min(y1, y2) < j < max(y1, y2), x1 <
p̂j < x2.

Assume WLOG that py1 = x1, and that x1 > 0 (if x1 = 0
we require a different approach, not described here). The
mass between cy1 and cy1−1 must be available, and even if
this mass is assigned entirely to p̂y1 , min{p̂y1 , . . . , p̂y2} =
p̂y1 holds. Each component between p̂y1 and p̂y2 therefore
requires at least 1

n+1
mass to reach the value of p̂y2 , as does

p̂y1 itself, so all available mass will be assigned before p̂y2
is eligible to receive any of it. The mass between cy2−1

and cy2 is therefore assigned to p̂y2−1.

In the case where x2 = x1 + 1
n+1

, we denote by y1 the
number of components equal to x1, and by y2 the number
equal to x2. Therefore, in this situation, we would want
to use a total mass y1

n+1
to increase all minima from x1 to

x2. We would then share the remaining y2
n+1

mass equally
between all components.

This mass assignment is not always allowed in our NPI
structure, as shown by the example below.

Consider the situation defined by the observation vec-
tor (2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2), with associated lower prob-
ability vector 1

25
(2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2). Entropy would

be maximised by increasing each element equal to 1
25

by
(1
25
)(14

11
) = 14

275
, and each increasing element equal to 2

25

by (1
25
)(3

11
) = 3

275
. Note that this is also the assignment

given by the algorithm in [2]. Figure 1 shows this assign-
ment is not possible.

Figure 2: Inability to apply Abellan/Moral algorithm

Figure 1 shows the available mass between the pairs of
categories c1 and c2, and c2 and c3. Each of these pieces
of available mass are of size 1

25
, and each of the smaller

rectangles has mass 1
275

. It is clear from the diagram that
assigning enough probability mass to p̂1 and p̂2 to make
them both equal to 25

275
forces the value of p̂3 to become

at least 27
275

.

Therefore the available probability mass cannot be spread
across p̂ so as to produce a uniform distribution. The
available mass that must be assigned to categories c1,
c2 and c3 is too great. We therefore require not only a
method for assigning mass that is compatible with our
model, but a proof demonstrating that the resulting dis-
tribution does indeed give the maximum entropy possible.

This approach is summarised as follows. If x2 = x1+
1

n+1
,

we try to assign the uniform distribution 1
n
(1, . . . , 1), cate-

gory by category, from left to right, where n is a function of
the number of categories within the string with associated
components equal to x1 (when x1 = x2, this assignment
is automatically successful). This assignment will fail if
either all available mass to some category ci is assigned
without p̂i reaching 1

n
, or p̂i reaches 1

n
and yet mass re-

mains available which must be assigned to category ci.

Once either event occurs (if neither does, then the uniform
distribution can in fact be reached), we start again from
p̂ci and attempt the same mass assignment. This may
occur several times. As a result, we will have divided
the components in the string vector into two or more sets.
Each set has either too much or too little available mass for
the desired assignment. Moreover, there must exist sets
{ca1

, . . . , cb1} and {cb1+1, . . . , cb2} for which one has too
much mass, and the other too little. In such a situation,
the algorithm can create two new strings, one ending with
cb1 and another beginning with cb1+1. The justification
for this follows from Lemma 4.2.

Lemma 4.2 Let 0 < l1 < n and l2 = n − l1. Let M be
a closed credal set of n-vectors for which u ∈ M ⇔ u =
(v,w), where v is a l1-vector and w is a l2-vector with
the following properties:

∑l1
i=1 vi > k1 and

∑l2
j=1 wj <

k2, and
k1

l1
> k2

l2
. Then if (k1

l1
(1, . . . , 1), k2

l2
(1, . . . , 1)) lies

within M, it is the distribution which maximises entropy.

Proof. From Lemma 4.1 entropy orderings are invariant

- O-NPI IDM IGR IG W-L

O-NPI - (6,14) (11,9) (11,9) -4
- (0,4) (1,4) (2,4) -9

IDM (14,6) - (14,6) (11,9) 18
(4,0) - (3,2) (1,1) 5

IGR (9,11) (6,14) - (10,10) -10
(4,1) (2,3) - (0,0) 2

IG (9,11) (9,11) (10,10) - -4
(4,2) (1,1) (0,0) - 2

Table 1: Comparison of methods

over multiplication by a constant, so we can assume k1 +
k2 = 1. Also by Lemma 4.1, following the assignment of
mass α to v and mass 1−α to w, the entropy is maximised
by setting vi =

α
l1
, ∀i and wj = 1−α

l2
, ∀j. Clearly, α ≥ k1

and 1−α ≤ k2. The proof, then, reduces to demonstrating
that, indeed, entropy is maximised by setting α = k1.

Construct a structure for which L = (vL,wL) and U =
(vU ,wU), where (vL)i = k1

l1
and (vU)i = 1 ∀i, and

(wL)j = 0 and (wU)j = k2

l2
∀j. By the algorithm in

[2], the elements corresponding to w must all reach their
upper bound before the elements of v are considered at
all. Therefore, giving more mass to v than the minimum
requirement violates the algorithm, and so the given as-
signment must, indeed, maximise entropy. 2

Lemma 4.2 proves that when {ca1
, . . . , cb1} has too much

(too little) mass and {ca2
, . . . , cb2} has too little (too

much) mass for the uniform distribution to be assigned,
entropy cannot be increased by taking mass from the set
of categories with less mass, so long as both sets can sep-
arately be assigned mass in such a way as to make all
components equal. However, if such an assignment is not
possible, we can simply split the set up again, and once
again apply Lemma 4.2, and so on. This justifies splitting
the string as described.

We now compare our method with the IDM imprecise
method, along with the Info Gain [9] and Info Gain Ratio
methods [9] over 21 data sets in which the categories can
plausibly be argued to be ordinal. All these methods were
run using the computer package known as WEKA. The
results are given in Table 1. The first pair of numbers
in each cell represent the number of wins and losses for
the row classifier with respect to the column classifier, in
terms of percentage of correct classification. For example,
the pair (12,6) in the second row tells us that the IDM
classifier outperformed the O-NPI classifier 12 times, and
was outperformed 6 times. The second pair of numbers
also represent wins and losses, this time using a paired
t-test at the 5% level. The final row of the table gives the
total number of wins minus the total number of losses for
both tests.

These results do not show any obvious improvement in
replacing the IDM structure with that of ordinal NPI.
Indeed, it seems to be performing worse than the IDM
method, and roughly equivalently to the IGR and IG

methods.1

We now describe the algorithm for minimising entropy.

5 Minimum entropy algorithm

Minimising entropy is difficult in general. However, in the
specific case of ordinal NPI, it is quite simple. We begin
with three lemmas.

Lemma 5.1 When minimising entropy, all available mass
between observed categories is assigned entirely to one of
the associated components.

Proof. Let H2(v1, v2) = −v1 ln(v1)−v2 ln(v2) be the con-
tribution of two components to the entropy. The entropy
function is concave, so if b ≤ c we have

H2(a+ c, a) ≤ H2(a+ c− b, a+ b). (5.1)

Therefore for any values a and c, H2(·, ·) is minimised
when either b = 0 or b = c. Let the adjacent observed
categories have components p̂i = a and p̂j = a+ c, and let
the mass between them be denoted by m > 0. Then from
(5.1) we have two inequalities

H2(a+ c+m,a) ≤ H2(a+ c+m− b, a+ b)

H2(a+ c, a+m) ≤ H2(a+ c− b, a+ b+m),

meaning the minimum entropy occurs when the entirety
of m is assigned either p̂i or p̂j . 2

Lemma 5.2 When minimising entropy, no unobserved
category is assigned mass.

Proof. Setting a = 0 in (5.1) shows any assignment of
mass to a zero component leads to an increase in entropy
compared to assigning that mass to a non-zero compo-
nent. Therefore this should never be done if an alterna-
tive is available, which is always the case for unobserved
categories in the ordinal NPI case. 2

Therefore the minimum entropy algorithm can operate
simply by assigning all unassigned mass between observed
categories ci and cj entirely to p̂i or to p̂j .

Lemma 5.3 When minimising entropy, for any two com-
ponents p̂i or p̂j corresponding to adjacent observed inter-
nal categories, the mass between ci and cj is assigned to
p̂i if p̂i > p̂j .

Proof. Consider any pair of adjacent observed internal
categories cj , cj+1 for which p̂j 6= p̂j+1. Assume WLOG
that p̂j < p̂j+1, and set p̂j =: r2 and p̂j+1 =: r3 =
r2 + 1

n+1
+ α for some α ∈ N. Since both categories are

internal, we can also consider the components p̂j−1 =: r1
and p̂j+2 =: r4. Between these four categories is available
mass 3

n+1
, and from Lemma 5.1 we have that three (not

necessarily distinct) components must receive 1
n+1

mass.

1Note that the WEKA code for the exact O-NPI algorithm

is still in development.

There are eight ways that this mass assignment can be
carried out. These can be divided into four pairs. In
each pair one assignment gives the mass between p̂j and
p̂j+1 to p̂j , and in the other it gives it to p̂j+1; the other
two mass assignments are identical. The eight mass
assignments are given in the table below, along with the
resulting size of each component. Each pair is presented
together, and the first case in the pair is always the one
in which the smaller component is assigned the mass.

- r1 r2 r3 r4
1 r1 r2 +

2
n+1

r2 +
1

n+1
+ α r4 +

1
n+1

2 r1 r2 +
1

n+1
r2 +

2
n+1

+ α r4 +
1

n+1

3 r1 r2 +
2

n+1
r2 +

2
n+1

+ α r4
4 r1 r2 +

1
n+1

r2 +
3

n+1
+ α r4

5 r1 +
1

n+1
r2 +

1
n+1

r2 +
1

n+1
+ α r4 +

1
n+1

6 r1 +
1

n+1
r2 r2 +

2
n+1

+ α r4 +
1

n+1

7 r1 +
1

n+1
r2 +

1
n+1

r2 +
2

n+1
+ α r4

8 r1 +
1

n+1
r2 r2 +

3
n+1

+ α r4

We now prove that for all four pairs, the second assign-
ment has lower entropy than the first. Therefore, irre-
spective of how the mass between p̂j−1 and p̂j and be-
tween p̂j+1 and p̂j+2 is assigned, we must assign the mass
between p̂j and p̂j+1 to the larger component.

This is immediately clear for the second, third and fourth
pairs by the concave nature of the entropy function; en-
tropy is minimised by setting two values as far apart as
possible. For the first pair, the two cases are equivalent
when α = 0, and we still lose nothing by assigning the
mass to the larger component. If α ≥ 1, we can define
α− 1

n+1
=: α1 ≥ 0 and re-write the pair

- r1 r2 r3 r4
1 r1 21 +

2
n+1

r2 +
2

n+1
+ α1 r4 +

1
n+1

2 r1 21 +
1

n+1
r2 +

3
n+1

+ α1 r4 +
1

n+1

and once again from the fact that the entropy function is
concave we see that minimising entropy requires assigning
the mass to the larger component.

We have then that for all mass assignments between the
category pairs cj−2, cj−1 and cj , cj+1, entropy is min-
imised by adding the available mass to the larger com-
ponent. Therefore every individual slice of available mass
between cj and c+1 can be considered separately, so long as
both neighbouring categories are internal, and p̂j 6= p̂j+1.

2

Boundary categories are handled in a similar way. If a
boundary category is unobserved, no mass will be assigned
to it. Otherwise, we can consider, say, p̂1 as being equiv-
alent to an internal category for which the mass on the
left has already been assigned elsewhere. This allows us
to make use of Lemma 5.3.

Lastly we deal with situations in which there are consec-
utive equal components. Suppose there are n consecu-
tive components all of size m. If n = 2, we can assign
the mass to either component. If n = 3, we assign all
mass to the central component, as H(m+ a,m,m+ a) >

H(m,m + 2a,m). This leaves the third component un-
changed, and so we can use this more generally to reduce
the number of consecutive components from n to n − 2.
This means we can continually re-apply this assignment
until either all mass has been assigned, or we are left with
just two equal components with available mass between
them. We then simply assign that mass to either side.

Note that our algorithm runs from left to right, assign-
ing mass to the larger component each time, and once
finished, returns and deals with each sequence of equal
components. Running the algorithm from right to left
might result in a different vector being returned. In other
words, the vector we find results in a global minimum for
entropy, but it does not follow that no other vector could
not also produce a global miniminum for entropy. As an
obvious example, consider K = 3 and observation vector
(1,0,1). Clearly L = 1

3
(1, 0, 1) and U = 1

3
(2, 1, 2). Our

minimisation algorithm returns the vector 1
3
(2, 0, 1), but

clearly the vector 1
3
(1, 0, 2) will have an identical entropy

value.

6 Conclusions and Further Work

At each stage of tree construction the method presented
here allows for the possibility that we cannot choose be-
tween potential split variables. This has been considered
previously regarding choice of root node [4], but we are
aware of no method in which this idea is applied to the
construction of the whole tree, or one which compares
entropy ranges. Clearly, it remains to test this method
against others - at the time of writing the WEKA code for
our method has not yet been written - but by expanding
focus beyond the root nodes and by utilising comparisons
between intervals, this method combines classification and
imprecise probability in an attractive way, by recognising
situations in which it is unreasonable to consider one split
variable choice as clearly superior to another.

Figure 3: Example 5.1: Tree 1

Further work is required on considering how best to collate
the set of categories given by the imprecise decision tree
for each data point. It would also be of value to consider
more thoroughly the implications of minimising entropy,
particularly with regard to unobserved categories. One of
the criticisms regarding attempts to maximise entropy is
that it invariably gives as much mass as possible to cat-
egories that were unobserved. This is difficult to justify

A1 A2 A3 A4 A5 C

1 1 3 0 0 2 1
2 1 3 0 1 1 1
3 1 2 0 1 0 1
4 1 2 0 1 0 1
5 1 3 0 1 0 1
6 1 3 0 1 3 2
7 1 0 1 0 1 1
8 1 0 1 0 1 2
9 1 1 0 1 0 1
10 1 1 0 1 1 1
11 5 0 0 0 1 2
12 5 0 0 0 1 2
13 5 0 1 0 0 1
14 5 0 0 0 0 1
15 2 3 0 1 1 2
16 2 4 1 0 1 1
17 1 1 1 1 1 2
18 2 4 0 1 1 1
19 2 0 1 0 0 1
20 2 2 0 1 2 1
21 2 0 0 0 1 2
22 3 1 0 1 0 1
23 3 3 1 1 1 1
24 3 1 0 1 0 1
25 1 0 1 1 4 1
26 2 1 0 0 3 1
27 3 1 0 0 1 1
28 3 0 0 0 2 1
29 3 0 1 1 1 2
30 3 1 0 1 0 1
31 4 2 0 0 0 1
32 4 1 1 1 0 1
33 4 0 1 0 1 2
34 3 1 0 1 1 1
35 4 0 0 0 1 2
36 4 0 0 0 0 1
37 4 0 1 0 1 1
38 4 0 0 0 1 2
39 5 0 0 0 0 1
40 4 0 0 1 1 2

41 3 0 0 1 1 1
42 3 0 1 0 0 1
43 3 1 1 0 1 1
44 5 0 0 0 1 2
45 4 0 0 1 0 1
46 5 0 0 0 1 2
47 5 0 0 0 0 1
48 5 0 0 0 0 1
49 2 1 0 1 2 1
50 4 1 0 1 0 1

Table 2: Data set for imprecise tree

Figure 4: Example 5.1: Tree 2

Figure 5: Example 5.1: Tree 3

theoretically. Moreover, the amount of mass given to each
unobserved category depends on how the unobserved cat-
egories are described, and how many there are, which may
cause problems. In contrast, minimising entropy guaran-
tees that no unobserved category will be given any mass,
side-stepping the issue of how to label and quantify unob-
served categories.

Finally, we should also consider using alternative informa-
tion measures (one such alternative is the Gini index [10])
to generate imprecise decision trees.

Acknowledgements

This work was supported by the UK National Institute
of Health Research, and by the Spanish Consejeŕıa de
Economı́a, Innovación y Ciencia de la Junta de Andalućıa,
under project TIC-06016, which supported the first and
second authors respectively. We would like to thank our
two reviewers for their comments and suggestions.

References

[1] Abellan, J. (2006) Uncertainty measures on proba-
bility intervals from the imprecise Dirichlet model,
International Journal of General Systems, Vol 35, 5,
509-528.

[2] Abellan, J. & Moral, S. (2003) Building classification
trees using the total uncertainty criterion, Interna-

tional Journal of Intelligent Systems 18 (12), 1215-
1225.

[3] Abellan, J. & Moral, S. (2005) Difference of entropies
as a non-specifity function on credal sets, Interna-

tional Journal of General Systems, Vol 34, 3, 201-
214.

[4] Abellan, J. & Masegosa, A. (2010) An ensemble
method using credal decision trees, European Jour-

nal of Operations Research, 205 (1), 218-226.

[5] Abellan, J., Baker, R.M. & Coolen, F.P.A. (2011)
Maximising entropy on the nonparametric predictive
inference model for multinomial data, European Jour-

nal of Operational Research , 212(1) 112-122.

[6] Baker, R.M. (2010) Multinomial Nonpara-

metric Predictive Inference: Selection, Clas-

sification and Subcategory Data, PhD thesis,
www.etheses.dur.ac.uk/257/

[7] Coolen, F.P.A., Coolen-Schrijner, P. & Maturi, T.A.
(2010) On nonparametric predictive inference for or-
dinal data. In: E. Hullermeier et al (eds), Computa-

tional Intelligence for Knowledge-Based Systems De-

sign, Springer, pp 188-197.

[8] Hill, B.M. (1968) Posterior distribution of percentiles:
Bayes’ theorem for sampling from a population, Jour-
nal of the American Statistical Association, Vol 63,
677-691.

[9] Quinlan, J.R. (1986) Induction of decision trees, Ma-

chine Learning 1, 81-106.

[10] Strobl, C. & Augustin, T. (2009) Adaptive selection
of extra cutpoints - an approach towards reconciling
robustness and interpretability in classification trees,
Journal of Statistical Theory and Practice, Vol 3, 119-
135.

[11] Troffaes, M.C.M. (2007) Decision making under un-
certainty using imprecise probabilities, International
Journal of Approximate Reasoning, Vol 45, 17-29.

[12] Walley, P. (1996) Inferences from multinomial data:
learning about a bag of marbles, Journal of the Royal

Statistical Society B 58, 3-57.

[13] Zaffalon, M. (2002) The naive credal classifier. Jour-
nal of Statistical Planning and Inference, 105 (i1),
5-21.

