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1 Overview

Nonparametric predictive inference (NPI) is a statistical method based on Hill’s assumption A(n)

[13], which gives a direct conditional probability for a future observable random quantity, condi-
tional on observed values of related random quantities [1, 3]. Suppose that X1, . . . , Xn, Xn+1 are
continuous and exchangeable random quantities. Let the ordered observed values of X1, . . . , Xn be
denoted by x(1) < x(2) < . . . < x(n) <∞, and let x(0) = −∞ and x(n+1) =∞ for ease of notation.
For a future observation Xn+1, based on n observations, A(n) [13] is

P (Xn+1 ∈ (x(j−1), x(j))) =
1

n + 1
for j = 1, 2, . . . , n + 1

A(n) does not assume anything else, and is a post-data assumption related to exchangeability. Hill
[14] discusses A(n) in detail. Inferences based on A(n) are predictive and nonparametric, and can be
considered suitable if there is hardly any knowledge about the random quantity of interest, other
than the n observations, or if one does not want to use such information, e.g. to study effects of
additional assumptions underlying other statistical methods. A(n) is not sufficient to derive precise
probabilities for many events of interest, but it provides optimal bounds for probabilities for all
events of interest involving Xn+1. These bounds are lower and upper probabilities in the theories
of imprecise probability [17] and interval probability [18], and as such they have strong consistency
properties [1]. NPI is a framework of statistical theory and methods that use these A(n)-based
lower and upper probabilities, and also considers several variations of A(n) which are suitable
for different inferences. For example, NPI has been presented for Bernoulli data, multinomial
data and lifetime data with right-censored observations. NPI enables inferences for m ≥ 1 future
observations, with their interdependence explicitly taken into account, and based on sequential
assumptions A(n), . . . , A(n+m−1). NPI provides a solution to some explicit goals formulated for
objective (Bayesian) inference, which cannot be obtained when using precise probabilities [3]. NPI
is also exactly calibrated [15], which is a strong consistency property, and it never leads to results
that are in conflict with inferences based on empirical probabilities.

NPI for Bernoulli random quantities [2] is based on a latent variable representation of Bernoulli
data as real-valued outcomes of an experiment in which there is a completely unknown threshold
value, such that outcomes to one side of the threshold are successes and to the other side failures.
The use of A(n) together with lower and upper probabilities enable inference without a prior distri-
bution on the unobservable threshold value as is needed in Bayesian statistics where this threshold
value is typically represented by a parameter. Suppose that there is a sequence of n + m exchange-
able Bernoulli trials, each with ‘success’ and ‘failure’ as possible outcomes, and data consisting of s
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successes in n trials. Let Y n
1 denote the random number of successes in trials 1 to n, then a sufficient

representation of the data for NPI is Y n
1 = s, due to the assumed exchangeability of all trials. Let

Y n+m
n+1 denote the random number of successes in trials n + 1 to n + m. Let Rt = {r1, . . . , rt}, with

1 ≤ t ≤ m + 1 and 0 ≤ r1 < r2 < . . . < rt ≤ m, and, for ease of notation, define
(
s+r0

s

)
= 0. Then

the NPI upper probability for the event Y n+m
n+1 ∈ Rt, given data Y n

1 = s, for s ∈ {0, . . . , n}, is

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) =
(

n + m

n

)−1 t∑
j=1

[(
s + rj

s

)
−
(

s + rj−1

s

)](
n− s + m− rj

n− s

)
The corresponding NPI lower probability is derived via the conjugacy property

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) = 1− P (Y n+m
n+1 ∈ Rc

t |Y n
1 = s)

where Rc
t = {0, 1, . . . ,m}\Rt.

For multinomial data, a latent variable representation via segments of a probability wheel has
been presented, together with a corresponding adaptation of A(n) [5]. For data including right-
censored observations, as often occur in lifetime data analysis, NPI is based on a variation of A(n)

which effectively uses a similar exchangeability assumption for the future lifetime of a right-censored
unit at its moment of censoring [9]. This method provides an attractive predictive alternative to
the well-known Kaplan-Meier estimate (KME) for such data.

2 Applications

Many applications of NPI have been presented in the literature. These include solutions to prob-
lems in Statistics, Reliability and Operational Research. For example, NPI methods for multiple
comparisons of groups of real-valued data are attractive for situations where such comparisons are
naturally formulated in terms of comparison of future observations from the different groups [8].
NPI provides a frequentist solution to such problems which does not depend on counterfactuals,
which play a role in hypothesis testing and are often criticized by opponents of frequentist statistics.
An important advantage of the use of lower and upper probabilities is that one does not need to
add assumptions to data which one feels are not justified. A nice example occurs in precedence
testing, where experiments to compare different groups may be terminated early in order to save
costs or time [12]. In such cases, the NPI lower and upper probabilities are the sharpest bounds
corresponding to all possible orderings of the not-fully observed data. NPI provides an attractive
framework for decision support in a wide range of problems where the focus is naturally on a future
observation. For example, NPI methods for replacement decisions of technical units are powerful
and fully adaptive to process data [10].

NPI has been applied for comparisons of multiple groups of proportions data [6], where the
number m of future observations per group plays an interesting role in the inferences. Effectively,
if m increases the inferences tend to become more imprecise, while imprecision tends to decrease
if the number of observations in the data set increases. NPI for Bernoulli data has also been
implemented for system reliability, with particularly attractive algorithms for optimal redundancy
allocation [11, 16]. NPI for multinomial data enables inference if the number of outcome categories
is not known, and explicitly distinguishes between defined and undefined categories for which no
observations are available yet [4]. Typically, if outcome categories have not occurred yet, the NPI
lower probability of the next observation falling in such a category is zero, but the corresponding
NPI upper probability is positive and depends on whether or not the category is explicitly defined,
on the total number of categories or whether this number is unknown, and on the number of
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categories observed so far. Such NPI upper probabilities can be used to support cautious decisions,
which are often deemed attractive in reliability and risk analysis.

3 Challenges

Development of NPI is gathering momentum, inferential problems for which NPI solutions have
recently been presented or are being developed include aspects of medical diagnosis with the use
of ROC curves, robust classification, inference on competing risks, quality control and acceptance
sampling. Main research challenges for NPI include its generalization for multidimensional data,
which is similarly challenging for NPI as for general nonparametric methods due to the lack of a
unique natural ordering of the data. NPI theory and methods that enable information from covari-
ates to be taken into account also provide interesting and challenging research opportunities. A
research monograph introducing NPI theory, methods and applications is currently in development
[7], further information is available from www.npi-statistics.com.
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