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Abstract

Accelerated Life Testing (ALT) is frequently used to obtain information on the

lifespan of devices. Testing items under normal conditions can require a great deal

of time and expense. To determine the reliability of devices in a shorter period of

time, and with lower costs, ALT can often be used. In ALT, a unit is tested under

levels of physical stress (e.g. temperature, voltage, or pressure) greater than the unit

will experience under normal operating conditions. Using this method, units tend

to fail more quickly, requiring statistical inference about the lifetime of the units

under normal conditions via extrapolation based on an ALT model.

This thesis presents a novel method for statistical inference based on ALT data.

The method quantifies uncertainty using imprecise probabilities, in particular it

uses Nonparametric Predictive Inference (NPI) at the normal stress level, combin-

ing data from tests at that level with data from higher stress levels which have

been transformed to the normal stress level. This has been achieved by assuming

an ALT model, with the relation between different stress levels modelled by a sim-

ple parametric link function. We derive an interval for the parameter of this link

function, based on the application of classical hypothesis tests and the idea that,

if data from a higher stress level are transformed to the normal stress level, then

these transformed data and the original data from the normal stress level should not

be distinguishable. In this thesis we consider two scenarios of the methods. First,

we present this approach with the assumption of Weibull failure time distributions

at each stress level using the likelihood ratio test to obtain the interval for the pa-
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rameter of the link function. Secondly, we present this method without an assumed

parametric distribution at each stress level, and using a nonparametric hypothesis

test to obtain the interval.

To illustrate the possible use of our new statistical method for ALT data, we

present an application to support decisions on warranties. A warranty is a con-

tractual commitment between consumer and producer, in which the latter provides

post-sale services in case of product failure. We will consider pricing basic warranty

contracts based on the information from ALT data and the use of our novel imprecise

probabilistic statistical method.
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Chapter 1

Introduction

The aim of accelerated life testing (ALT) is to allow researchers to estimate the useful

lifespans of products or components and to inform advances in product reliability

[50,60]. The unique characteristic of ALT is to determine the reliability of products

in a shorter period of time. The process of testing components’ expected lifespans

under normal operational conditions may be time-consuming and expensive. ALT

is frequently used to determine the reliability level of devices in a shorter period of

time. The basic premise of ALT is to test a unit under greater-stress conditions than

the stress levels encountered under normal usage. ALT represents an important

technique for gathering product failure information under a variety of conditions

within a reasonable time and budget [50,60].

In this thesis, we present a new imprecise statistical inference method for ALT

data, where nonparametric predictive inferences (NPI) at normal stress levels are

integrated with a parametric link function, combining data from tests at that level

with data from higher stress levels which have been transformed to the normal stress

level. The method includes imprecision which provides robustness with regard to

the model assumptions. The imprecision leads to observations at increased stress

levels being transformed into interval-valued observations at the normal stress level,

where the width of an interval is larger for observations from higher stress levels.

Generally, uncertainty, within the field of statistics and probability, tends to be

measured by classical probability following Kolmogorov’s axioms [12]. Generalisa-

tion of Kolmogorov’s axioms can bring forth possible solutions when information

1



1.1. Motivation 2

and knowledge are limited or incomplete, where classical probability is considered

too restrictive [12]. Such generalisation includes the use of imprecise probabilities,

which is mainly characterized by using lower and upper bounds for probabilities

instead of the standard theory of ‘precise’ or ‘single valued’ probability [8, 12, 70].

Further, the domain of imprecise probability, which has seen a wealth of research

over the past two decades, has served as a motivation to researchers in various areas

of statistics and engineering. This has resulted in a project website (The Society

for Imprecise Probability: Theories and Applications - www.sipta.org) and biennial

conferences [8, 48].

Over recent years, a number of methods of quantifying uncertainty and assessing

reliability have appeared in the literature, which provide many benefits compared

to classical probability. Thus, these methods and their respective practical appli-

cations represent a key area of cutting-edge research in this domain. For instance,

interval probability [74, 75] and the theory of imprecise probabilities [72] provide

techniques for reliability analysis. Regarding imprecise probabilties, Coolen [20] has

investigated a range of problems related to imprecise reliability by assessing various

tools designed to apply imprecise reliability to many practical applications.

The interesting work on imprecise probability has paved the road to the devel-

opment of new methods of statistical inference such as nonparametric predictive

inference (NPI) [9]. Many researchers have presented applications of NPI related to

new approaches on different types of data.

The rest of this chapter is organized as follows. Section 1.1 provides the mo-

tivation for the work in this thesis. In Section 1.2, we provide the outline of this

thesis.

1.1 Motivation

Because of the complex nature of ALT scenarios, there can be quite complicated

modelling for statistical inference, which provides many challenges. Thus, the main

object of this thesis is to provide a straightforward, robust model for quantifying

imprecision in which can be widely used in practical applications. This model will
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generate interval-based probabilities rather than exact probabilities. However, if

these interval-based data fail to provide clear insight into ways to overcome practical

application issues, we can modify our model’s assumptions, collect more data or

include specialist opinion to refine our approach. The starting point of this work is

that the paper of Yin et al. [79], where it was first suggested.

Yin et al. [79] introduced an imprecise statistical method for ALT data using

the power-Weibull model. In their paper, they developed the imprecision in the

power-law link function by considering an interval around the parameter estimate,

leading observations at stress levels other than the normal level to be transformed

into intervals at the normal level [79]. Yin et al. [79] did not give an argument, other

than simulation studies, for the amount of imprecision in the parameter. Building on

the work by Yin et al. [79], we introduce the use of classical statistical tests between

pairwise stress levels to obtain the interval for the parameter of the link function.

This use of frequentist statistical tests to determine the level of imprecision is the

main contribution presented in this thesis.

We obtain an interval for the parameter of the link function which is assumed

at each stress level by (i) applying classical hypothesis testing between the pairwise

stress levels to determine the level of imprecision, and (ii) assuming that if data

from a higher stress level are then transformed to a normal stress level, then the

transformed data and the original data (i.e. from the normal stress level) should, in

theory, be indistinguishable. Note that each observation at the higher stress level is

transformed to an interval at the normal stress level, where the interval tends to be

larger if a data point was originally derived from a higher stress level.

We present this method using the assumption of Weibull failure time distribu-

tions at each stress level using the likelihood ratio test to obtain the interval; as

well as without such an assumption, but using a nonparametric hypothesis test to

obtain such interval for the parameter of the link function. We explore impreci-

sion in the link function, which will allow observations of increased stress levels

to be transformed to interval-valued observations at normal stress levels. We then

present simulation studies to investigate the performance of the proposed method

to establish appropriate links between stress test levels.
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1.2 Outline of the thesis

In this thesis, we develop novel important extensions for the use of the imprecise

statistical predictive inference method for accelerated life testing data. Our new

approach provides robustness for the predictive inference by using statistical tests

between the pairwise stress levels, to obtain the intervals for the values of the pa-

rameter of the link function. Thus, this thesis provides an innovative approach by

using frequentist statistical tests to determine the level of imprecision.

This thesis is structured as follows. Chapter 2 introduces and summarizes key

background concepts from the literature, applicable to the topics investigated in

this thesis. It provides a brief overview of the ALT concepts and some of the life

distribution functions which are applicable in reliability applications. We briefly

discuss stress loading methods which can be applied in accelerated testing, including

constant, step, and progressive stress loading. Chapter 2 also briefly review the

statistical tests which are used in the thesis. Then, we address general notions of

imprecise probability and the main idea of nonparametric predictive inference (NPI).

In Chapter 3, we present a new predictive inference method based on ALT data

and the likelihood ratio test. It assumes a failure time distribution with a parametric

link function at each stress level. We apply the pairwise likelihood ratio test to create

an interval for the parameter of the link function. We assume a distribution model

for all levels and derive an interval for the parameter of the link function using

pairwise likelihood ratio tests. We use this interval to transform observations of

increased stress levels to interval-valued observations at the normal stress level.

Also, we use NPI at the normal stress level to achieve predictive inference on

the failure time of a particular unit operating under normal stress levels using the

original data at the normal stress level and interval-valued data transformed from

higher stress levels. We investigate the performance of our method via simulations.

A paper presenting the results in this chapter has been submitted for publication [6].

Also, the results of this chapter have been presented at several seminars and con-

ferences, and we have also published short papers in related conference proceedings.

Parts of Chapter 3 have been presented at the 2017 Research Students’ Confer-

ence in Probability and Statistics at the University of Durham, and at the 10th
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IMA International Conference on Modelling in Industrial Maintenance and Reliabil-

ity (Manchester, 2018), and a related short paper was published in the conference

proceedings [3]. The results of Chapter 3 have also been presented at the 3rd In-

ternational Conference on System Reliability and Safety (Barcelona, 2018), and a

related short paper was published in the conference proceedings [5].

Chapter 4, presents a similar method to in Chapter 3 but without the assump-

tion of a parametric distribution for the failure times at each stress level. The

method is largely nonparametric, with a basic parametric function to link different

stress levels. We use the log-rank test to provide adequate imprecision for the link

function parameter, and conduct simulation studies to investigate the performance

of our proposed approach. A paper based on this chapter has been submitted for

publication [26]. This was presented at the Soft Methods in Probability and Statis-

tics (SMPS) conference (Compigne, 2018), and a short paper was published in the

conference proceedings [4].

In Chapter 5 we explore the use of our new methods, as presented in Chapters

3 and 4, for decision making with regard to warranties. This work will be presented

at the ESREL conference (Hannover, 2019), a short paper has been submited for

the conference proceedings [7].



Chapter 2

Background

This chapter provides an overview of concepts from the literature relevant to the

topics investigated in this thesis. Section 2.1 present an overview of reliability test-

ing. Section 2.2 provides a brief introduction to the main concepts of accelerated

life testing (ALT). We present a brief overview of ALT and discuss some of the

commonly used failure distributions and ALT link functions between stress levels.

In Section 2.3, we briefly review basic statistical tests used in this thesis, namely the

likelihood ratio test and the log-rank test. The likelihood ratio test and log-rank

test will be employed in Chapters 3 and 4, respectively. Finally, we give an overview

of the main aspects of NPI in Section 2.4.

2.1 Reliability testing

Reliability analysis techniques play an important role in the engineering field and the

manufacturing industry in terms of product design and development processes. How-

ever, product reliability analysis is renowned for being a time-consuming process.

Reliability analysis is used to model a product’s time to failure in most applications,

and falls into two categories: complete (where all failure data are made available)

and censored (where some data are omitted) [41,60].

In terms of complete data sets, exact test-unit failure times are used, as these

data are both measured and known [41, 60]. However, not all (or indeed any) units

may fail during a single testing cycle; such data are called censored data [41, 60].

6
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Thus, because of these two different conditions under which censoring may occur,

such data can be further divided into time-censored data (type I-censored) and

failure-censored data (type II-censored). Type I-censored data is typically obtained

when the censoring time is pre-set, and the number of failures is expressed as a

random variable. In terms of type II-censored data, testing is completed following

a pre-specified number of failures [41, 60]. In this case, the time period in which a

specified number of failures will occur is expressed as a random variable [60].

Reliability analysis for any new product at time t = 0 and consequent failure

at time T employs two terms: the reliability function R(t) and the hazard function

h(t), where T represents the reliability period for the product in question [41]. The

reliability function R(t) represents the probability that the product will survive until

time t. It is defined as

R(t) = P (T > t) = 1− F (t). (2.1.1)

Note that the reliability function R(t) is a monotonically decreasing function:

R(t1) ≥ R(t2) ∀ t1 < t2. (2.1.2)

where R(0) = P (T > 0) = 1.

A concise definition of the hazard rate is the immediate potential per unit time for

an event to occur based on the assumption that an individual unit has withstood

testing up until time t [41]. This results from the determination of the survival

function, because when t increases, the survival rate will never increase [41]. The

hazard function h(t) is defined as

h(t) = lim
4t→0

P (t ≤ T < t+4t|T ≥ t)

4t
. (2.1.3)

Maximum likelihood estimation (MLE) is a well-known and widely used statisti-

cal method used to estimate the parameters of probability distributions. Likelihood

functions are formed from observed data and the chosen distribution for these data,

which are assumed to be independent and identically distributed [1, 60, 62]. The

likelihood function has been discussed a great deal in the literature, and applied to

both failure data and censored data [60].
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The method of MLE can be used for estimating the unknown parameters of

lifetime distributions. The likelihood function for a chosen failure time distribution

with parameter θ is defined as

L(θ; t) =
n∏
i=1

f (ti; θ)
u∏
j=1

S (cj; θ) ,

where f(.) is the probability density function, ti is the observed failure times, and

i = 1, ..., n. S(.) is the survival function, cj is the censored times, and j = 1, ..., u.

When assessing the reliability of a new product, the foremost challenge is to

determine reliability in a relatively short period of time. Typically, we use lifes-

pan to assess a product, system or component. In traditional testing methods,

researchers perform these life tests only under normal operating conditions, to di-

rectly determine a product’s failure time distribution and the parameters associated

with failure. However, this method of obtaining life data at least in its current form

is often not viable in present-day industrial testing because current products are

typically more reliable than in the past. Further, there are also greater time pres-

sures nowadays where new products are required to be launch-ready very soon after

they have been designed. This issue has provided the motivation to create a new

lifespan testing method, namely accelerated life testing (ALT), which can provide

meaningful product failure data in a short space of time. ALT will be introduced in

the next section.

2.2 Accelerated life testing

ALT is frequently used to gather information on the expected lifespans of a range of

devices; it represents an efficient way of testing, if testing under normal conditions

requires a great deal of time and expense. Thus, ALT enables testing the reliability

of devices in shorter time periods and at lower cost. ALT involves testing a particular

unit under varying degrees of physical stress (e.g. temperature, voltage, or pressure),

greater than normal operating conditions. This approach causes devices to tend

to fail more quickly, enabling testers to estimate devices’ expected lifetimes under

normal operating conditions via extrapolation using an ALT model.
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In recent decades, various methods for analyzing ALT data and a variety of meth-

ods for assessing the reliability with different ALT scenarios have been introduced.

An excellent introduction to ALT was given by Nelson [60]. This was followed by

a large literature on ALT. In what follows, we we briefly introduce some designs of

ALT tests, life time distribution, and acceleration models [60].

A wide range of test designs can be applied in accelerated testing, the main ones

are: constant-, step- and progressive-stress testing [60]. The basis for classification

of the stress loading is the dependency of the stress with respect to time t.

Constant stress loading (which is time-independent) is the most common form

of stress loading, where products operate at constant stresses. In constant-stress

testing, units are tested at a specific stress level K0, K1, ..., Km until they either fail

at that particular stress level or testing is ended for another reason [60].

Constant stress loading has several advantages [60]. When the experiment is

designed, extrapolation at the constant use level condition is more accurate than

time-varying loading. This is because all units under constant stress are maintained

at the same voltage, temperature, or pressure for a given stress level, which makes

it easier and simpler to run each test. However, the failure of units under constant

stress usually takes a long time, especially at normal levels of stress, which makes it

more time-consuming than testing under time-dependent stress levels [60]. We only

consider the constant stress loading in this thesis, because it is the simplest stress

loading for which to develop new methods. Note that we do not consider design of

ALT tests in this thesis, we just assume the data are given.

When developing an acceleration model, to determine the life-stress relationship

in ALT, two important components need to be considered. First, we need to describe

the relationship between failure time and stress level. In particular, they should

reflect the way that various levels of stress affect how quickly the failure mechanisms

occur, and how stress affects the overall lifetime of a given device. In real life if one

increases the stress, the failure occurs faster, and it may lead to different modes of

failure that would need to be modelled. However, in this thesis, we assume that the

modes of failure and their relative frequency are unchanged by stress and we only

study the statistical development of the methods. The model should also include a
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lifetime distribution for each fixed stress level (e.g. Weibull or log-normal) [50,60].

Variations among products, in terms of performance, lifetime and quality, can

be modelled by a statistical distribution. Life time distribution functions describe

distributions for products which are applicable to failure data analysis and relia-

bility estimations [60]. Life time distributions can be used to model increasing or

decreasing failure rate, and analyse the differences between the products, and to

model reliability [50, 60]. One of the most commonly used and widely applicable

distributions used for life data analysis is the Weibull distribution, which we use in

this thesis.

The Weibull distribution [60] is a popular way to model reliability, and is thus

used for examining product lifetime. It is also used to describe the failure properties

of electronic components and the breaking strengths of the material(s) they are

composed of [60]. Breaking strengths (electronical or mechanical) in accelerated

test form one example [60]. The Weibull distribution is commonly utilised in the

accelerated testing of roller bearings [50,60]. The Weibull distribution [60], is given

by

f(t) =
β

α
(
t

α
)β−1 exp

[
− (

t

α
)β
]
,

where t > 0. The unknown parameters of the Weibull distribution are the shape

parameter β > 0, and the scale parameter α > 0 , and its survival function is

S(t) = exp
[
−
( t
α

)β]
.

The hazard rate of the Weibull distribution is

h(t) = f(t)/S(t) =
(β
α

)( t
α

)β−1
,

where the h(t) is the hazard rate at age t. In short, the hazard rate is used to

discribe whether the failure rate of a product increases or decreases with product

age [60]. For β > 1, the hazard rate is a strictly increasing function with respect

to time and when β < 1, the Weibull distribution shows a decreasing hazard rate.
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For β = 1, the Weibull distribution has a constant hazard rate and is equal to the

Exponential distribution [50,60]

Some other distributions used for life data analysis are the Exponential, Log-

normal, and Gamma distributions, but we do not consider these in this thesis. Note

that they can be used instead of the Weibull distribution in Chapter 3, as long as

these would be combined with a link function such that it enables transformation

as has been done in Chapter 3.

Determining the life-stress relationship in ALT usually involves using either a

physical or an empirical acceleration model [68]. Physical or chemical theory based

models are attractive for some failure mechanisms [68]. These types of models de-

scribe the process that causes device failure over a range of stress levels, in order

to facilitate extrapolation to the normal stress level [68]. Failure mechanisms and

accelerating variables usually have a complicated relationship [68]. In most situa-

tions, a simple model will not be sufficient to describe the failure process and its

causes [50, 60,68].

In this thesis, we do not aim at complex models but we are exploring simple

models combined with imprecision to get robustness around the simple models. We

have not found such an ALT method combined with imprecise probability methods

in the literature. Statistical inference for ALT data tends to focus on parameter

estimates. We comment on this in Chapter 6.

ALT is used for extrapolating information to the normal stress level about fail-

ure time distributions, and the reliability of a given product [60, 68]. Acceleration

factors are used to determine the failure time at a particular stress level, which

can subsequently be used to predict the failure time at different levels of operating

stress [60,68]. This is known as an acceleration model. While statistical distributions

identify the lifetimes of a particular type of unit at each stress level and distribution

for items, the acceleration model derives the scale parameter, or the shape parame-

ter of a life distribution, as a function of the applied stress [50, 60, 68]. Some of the

most important and commonly used acceleration models are the Arrhenius, Eyring,
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and power-law models, which we use in this thesis [17,34,50,60,71].

The Arrhenius life-stress relationship model is one of the most widely used for

testing when the stimulus or accelerated variable is thermal stress [60, 68]. It is

often an appropriate choice if a unit’s failure mechanism is driven by temperature

[60, 68]. The physics-based Arrhenius law for chemical reaction rates explains that

as temperature increases, this induces increased levels of atomic movement, and so

the processes that cause failure speed up [60, 68]. Therefore, the Arrhenius model

explains the reaction rate α of a unit as a function of applied temperature [17, 34,

50,60,71]. This model can be expressed as

α = A exp

(
−EA
kB.K

)
, (2.2.1)

where α is the reaction rate, A is a constant characteristic of the united failure

mechanism and test condition, EA is the activation energy in electron-volts, kB

is the Boltzmann’s constant (8.6171 × 10−5 electron-volts per ◦C), and K is the

absolute temperature (Kelvin) for the Arrhenius relationship (accelerated stress).

By taking the natural logarithm of (2.2.1), it yields the linear relationship

ln(α) = γ0 +
γ

K
, (2.2.2)

where γ = EA
kB

, γ0 = ln(A).

The natural logarithm of the scale parameter at the normal stress level is

ln(α0) = γ0 +
γ

K0

,

and the natural logarithm of the scale parameter at the higher stress level is

ln(αi) = γ0 +
γ

Ki

.

The Weibull distributions for different stress levels are assumed to have different

scale parameters αi > 0 for level i. The Arrhenius link function for scale parameters

is
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αi = α0 exp
( γ
Ki

− γ

K0

)
. (2.2.3)

Where using this model with temperature as stress levels, K0 is the normal

temperature (Kelvin) at stress level 0, Ki is the higher temperature (Kelvin) at

stress level i, and γ > 0 is the parameter of the Arrhenius link function model.

In this thesis, we use the Arrhenius model under the Weibull distribution to link

the scale parameter at different failure times. The Arrhenius model, however, can-

not be applied to all temperature issues [60, 68]. In some cases, it is sufficient over

only a limited temperature range [60, 68]. According to Nelson [60], in particular

real-world application (e.g. motor insulation), the Arrhenius model may not fit the

data well [60].

The Eyring model provides an alternative to the Arrhenius model. It also uses

temperature as the accelerating variable, and is based on quantum mechanics [50,60,

71]. In this model, the relationship between mean time to failure α and temperature

K is defined by

α =
A

K
exp(

λ

K
),

where λ = EA
kB

. A and λ > 0 are constant characteristic of the united failure mecha-

nism and test condition, kB is the Boltzmann’s constant, (8.6171×10−5 electron-volts

per ◦C), and K is the absolute temperature (Kelvin).

The scale parameter of a unit at the normal stress level is

α0 =
A

K0

exp(
λ

K0

),

and the scale parameter at the higher stress level is

αi =
A

Ki

exp(
λ

Ki

).

(2.2.4)
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The Eyring link function for the Weibull scale parameters is

αi = α0 × (K0/Ki)× exp
[
(λ/Ki − λ/K0)

]
Where using this model with temperatures as stress levels, K0 is the normal

temperature (Kelvin) at stress level 0, Ki is the higher temperature (Kelvin) at

stress level i, and λ > 0 is the parameter of the Eyring link function model.

The Eyring model can be applied to testing capacitors, electro-migration failure,

and solid rupturing [60]. It should be noted that both the Eyring and Arrhenius

models derive similar results in many applications, and both fit failure times related

to temperature [60].

The power-law model is commonly used for testing when the stimulus or accel-

erated variable is voltage stress. It is often an appropriate choice if a unit’s failure

mechanism is driven by voltage to analyse lifetime data as a function of the ALT

model [60]. In the power-law model, the relationship between scale parameter α and

voltage K is

α =
1

(C.K)γ
,

where C and γ are parameters representing characteristics of the product and test

method, and K represents the stress level in terms of voltage. The scale parameter

at normal stress level is

α0 =
1

(C.K0)γ
,

and the scale parameter at the higher stress level is

αi =
1

(C.Ki)γ
.

The power-law link function of scale parameter αi should be used for establishing

a connection between different stress levels i, and is assumed to satisfy the function

αi = α0

(K0

Ki

)γ
.
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Where using this model with different voltages as the stress levels, K0 is the

normal voltage at stress level zero, Ki is the higher voltage at stress levels, and γ is

the parameter of the power-law link function model.

Some common applications of the power-law model are for testing electrical in-

sulation, dielectrics in voltage endurance evaluations and materials, bearings, and

electronic devices, to determine their useful lifespans and reliability [60]. For more

details, see [50,60].

As examples of applications, Fan et al. [30] presented the maximum likelihood

estimation (MLE) and Bayesian inference on all parameters of ALT models under

an exponential distribution, with a linear link function between the failure rate and

the stress variables under the Box-Cox transformation. Fard and Li [31] presented

an optimal step stress to obtain the optimal hold time at which the stress level is

changed for step stress ALT design for reliability prediction. They assumed a Weibull

distribution for the failure time at any constant stress level, and the scale parameter

of the Weibull distribution was assumed to be a log-linear function of the stress level.

Elsayed and Zhang [29] proposed an optimal multiple-stress-type ALT plan using a

proportional hazards model to obtain failure time data rapidly in a short period of

time. Sha and Pan [67] introduced step-stress ALT with Bayesian analysis for the

Weibull proportional hazard model. Nasir and Pan [59] assumed a Bayesian optimal

design criterion and presented acceleration model selection ALT studies, while Han

[36] conducted research into temporally and financially constrained constant-stress

and step-stress ALT.

Whilst ALT models typically consider failure times as the events of interest, there

have also been important contributions with more detailed modelling, in particular

exploiting methods to mathematically model degradation processes. For example,

Liao and Tseng [44] proposed an optimal design for step-stress accelerated degrada-

tion tests with the degradation process modelled as a stochastic diffusion process.

Pan et al. [64] presented a bivariate constant stress accelerated degradation model

and related inference. They assumed a device which has two performance charac-

teristics which are modelled by a Wiener process, to determine the relibility of high



2.3. Basic Statistical Methods 16

quality devices with a time scale transformation, and the Frank copula is used to

model dependence of the two performance characteristics. Duan and Wang [28] pro-

posed a bivariate constant stress accelerated degradation model with inference based

on the inverse Gaussian process. It is important to note here that the modelling of

degradation processes does require much information about the engineering process

and physical properties of the equipment, which may come from detailed measure-

ments of the process or expert judgements. While this is an important development

for real world accelerated life testing, we do not address such approaches further in

this thesis and only assume information about the failure times to be present.

2.3 Basic Statistical Methods

Comparing the survival function or the probability distribution of two independent

groups, possibly including right-censored observations often requires classical statis-

tical tests. In this section we present a brief overview of the statistical tests used in

Chapters 3 and 4 of this thesis. Subsections 2.3.1 and 2.3.2, introduce the likelihood

ratio test and the log-rank test, respectively. In Chapters 3 and 4 of this thesis, we

will use these test statistics for the pairwise stress levels to find the interval of values

of the parameter of the link function for which we do not reject the null hypothesis

of two or more groups of failure data, possibly including right censored data, coming

from the same underlying distribution. Indeed, for our methods in Chapters 3 and

4, other statistical tests could be used, and of course if we use different tests these

may lead to slightly different results.

2.3.1 Likelihood ratio test

Hypothesis testing is one of the main methods in statistical inference and its appli-

cations. Testing equality of the probability distribution of two or more independent

groups often involves parametric statistical tests. A general classical hypothesis test

that can be used to test equality of the survival distributions, is the likelihood ratio

test [42, 63]. The likelihood ratio test is used to compare two independent failure

data groups, possibly including right-censored observations (e.g. resulting from two
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ALT test), in assumed parametric models.

The probability density function of a statistical distribution is assumed to de-

scribe the failure time at a fixed stress level, and its parameters are therefore maxi-

mized in the likelihood ratio test based on the idea of hypothesis testing for which

we do not reject the null hypothesis of two groups of data, coming from the same

underlying distribution. To obtain the likelihood ratio test, we need to compute

the difference between the log likelihood of the alternative hypothesis L̂1 and the

likelihood of the null hypothesis L̂0 [42].

Suppose that L1 and L0 be the maximized log-likelihood under the alternative

and the null hypothesis respectively. Then the likelihood ratio (LR) test statistic is

LR = 2(L̂1 − L̂0), which under the null hypothesis, follows a χ2 distribution with

degree of freedom which is equal to the difference in the number of parameters of

each of the two models. The likelihood ratio test is discussed in more detail in all

good introductory statistics books (see e.g. [42]).

2.3.2 Log-rank test

The general advantege of nonparametric tests is that they are “distribution-free”.

The use of nonparametric statistical tests often involve comparison of two groups of

data, e.g. data resulting from an experiment with two different groups in which units

are studied in accelerated test (e.g. temperature, voltage, humidity, pressure). Test-

ing equality of the survival distribution of two independent groups often involves

nonparametric statistical tests. There are several nonparametric test procedures

that can be used to test equality of the survival distributions. One popular non-

parametric test for equality of the survival distributions of two groups is the log-rank

test [46, 65]. The log-rank test is a nonparametric test and one of the most widely

used for comparing the survival distribution of m ≥ 2 groups [65]. Sometimes, the

log-rank test is called the Mantel-Cox test [33, 47, 66]. It compares the observed

numbers of failures for two groups with the expected numbers of failures [66].

Conditionally on the number at risk in the groups [41], the log-rank test statistics

can be determined by using observed and expected values for each group, and com-

paring the hazard rates between the two groups throughout [65, 66]. The log-rank
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test obtains the expected number of failure for expected number of failure for group

i ∈ {1, 2} as:

eij =
( ni,j
n1,j + n2,j

)
× (m1,j +m1,j). (2.3.1)

Suppose that there are two groups consisting of ni (i = 1, 2, ...,m) individuals.

Individuals in each group have either a failure or right-censoring time. Let 0 <

t(1) < t(2) < ... < t(k) < ∞ denoted the failure time, for ease of notation let t0 = 0

and tk+1 = ∞. For ease of presentation, we assume that no ties occur among

the observed value in the combined group. Suppose that m1,j denoted the number

of failures occur at tj in group one, m2,j denoted the number of failures occur at

tj in group two. Let ni,j be the number of units at risk just prior to time t(j)

(j = 1, 2, ..., k).

The log-rank test statistics is obtained by

log-rank =
(O2 − E2)

2

Var(O2 − E2)
, (2.3.2)

where O2 − E2 =
∑k

j=1(m2,j − e2,j).

Therefore, the variance of Var(Oi − Ei) is defined by

Var(Oi − Ei) =
k∑
j=1

n1,jn2,j(m1,j +m2,j)(n1,j + n2,j −m1,j −m2,j)

(n1,j + n2,j)2(n1,j + n2,j − 1)
. (2.3.3)

The test statistics approximately follows a χ2 distribution and a degree of free-

dom which is equal to the difference in the number of groups [42]. Alternative tests

statistics can be used instead of the log-rank test statistics to test equality of survival

functions [33].

2.4 Nonparametric predictive inference

In terms of imprecise probability, classical probability is generalised as uncertainties

relating to events are measured not with single numbers but intervals [20]. For

example, in classical probability, event A would be ascribed a single number P (A) ∈
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[0, 1], where P is a probability measured by classical probability which operates

within the bounds of Kolmogorovs axioms. In terms of quantifying uncertainty,

imprecise probability as a statistical concept was first proposed by Boole [15] in

1854 and has had a long history since Hampel [35]. Over the past few years, a

number of alternative approaches to quantifying uncertainty have been proposed

including interval probability theory, introduced by Walley [72] and Weichselberger

[74] which proposes that probabilities have lower and upper range of probabilities i.e.

[P (A), P (A)] respectively, with 0 ≤ P (A) ≤ P (A) ≤ 1 while classical probability

theory includes a complete lack of data about the event in question i.e. P (A) =

0 and P (A) = 1. Here, P (A) represents the lower probability of event A, and

P (A) represents the upper probability for event A. The imprecision for event A is

4(A) = P (A)−P (A). For the lifetime failure observation, Coolen [18] presented the

lower and upper predictive probabilities. These probabilities form part of a wider

statistical methodology called Nonparametric Predictive Inference (NPI), which will

be addressed briefly in this section.

We review Nonparametric Predictive Inference (NPI), closely following [8,48,58].

NPI is a statistical method which provides lower and upper survival functions for a

future observation based on past data using imprecise probability [10, 24]. Hill [37]

proposed an assumption which gives direct conditional probabilities for a future

random quantity which depend on the values of related random qualities [9, 23,

24]. It proposes that the rank of a future observation among the values already

observed will be equally likely to have each possible value 1, ..., n+1 [48,58]. Suppose

that X1, X2, ..., Xn, Xn+1 represent exchangeable and continuous real-valued possible

random quanities, then the ranked observed values of X1, X2, ..., Xn can be denoted

by x(1) < x(2) < ... < x(n). Let x(0) = 0 and x(n+1) =∞. The assumption A(n) is

P (Xn+1 ∈ (x(j−1), x(j))) = 1/(n+ 1)

for all j = 1, 2, ..., n+1. Here, no tied observations are included for convenience, any

tied values can be dealt with by assuming that tied observations differ by a small

amount which tends to zero [38,58].

Inferences which are based on A(n) are nonparametric and predictive [58]. They
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can be considered suitable if there is hardly any knowledge about the random quan-

tity of interest, except for the n observations, or if one does not want to use any

such further information [58]. The A(n) assumption is not sufficient to derive precise

probabilities for many events of interest [58]. However, this approach does yield op-

timal bounds for probabilities through the ‘fundamental theorem of probability’ [27],

which are lower and upper probabilities in the imprecise probability theory [9, 10].

The lower and upper probabilities for event A are denoted by P (A) and P (A),

respectivily. These are open to interpretation in various ways [10]. For instance,

P (A) can be assumed to be the supremum buying price for a gamble on event A,

such that if A occurs then 1 is paid, if not then 0 is paid. This can also simply be

interpreted as the maximum lower bound for the probability of A, which derives from

the assumptions made. Similarly, P (A) can be interpreted as the minimum selling

price for the gamble on A, or the minimum upper bound based on the assumptions

made. We have 0 ≤ P (A) ≤ P (A) ≤ 1, and the conjugacy property P (A) =

1− P (Ac) where, Ac is the complimentary event of A [9, 10].

The NPI lower and upper survival functions for a future observation Xn+1 are

SXn+1
(t) =

n− j
n+ 1

, for t ∈ (xj, xj+1), j = 0, ..., n. (2.4.1)

SXn+1(t) =
n+ 1− j
n+ 1

, for t ∈ (xj, xj+1), j = 0, ..., n. (2.4.2)

Events of interest in reliability and survival analysis are usually failure [19,25,79].

However, such data are often right-censoring, which means for some units, they are

only known that the events have not yet failed at specific time of observations [79].

The A(n) assumption cannot handle right-censored observation, and demands fully

observed data [79]. Coolen and Yan [21] presented a generalization of A(n), called

rc-A(n), which is suitable for right-censored data with nonparametric predictive in-

ference [79]. Moreover, rc-A(n) uses the additional assumption that, at the moment

of censoring, the residual lifetime to failure of a right-censored unit is exchangeable

with the residual lifetime to failure of all other unites that have not yet failed or

been censored [48,79].
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Suppose that n units consisting of u units failed during the experiment at differ-

ent times x(1) < x(2) < ... < x(u). Also, n− u right-censored units c(1) < c(2) < ... <

c(n−u) and we set x(0) = −∞ and x(u+1) = ∞. Suppose further that there are si

right-censored observations in the interval (xi, xi+1), denoted by ci
1
< ci2 < ... < cisi ,

so
∑u

n=0 si = n− u. Let dij be the number of event at the failure or censoring time,

with di0 = xi and dij = cij for i = 1, 2, ..., u and j = 1, 2, ..., si , and set ñcu and

ñdij number of subjects in the risk set just before to time cu and dij, respectively,

corresponding to the definition ñ0 = n+ 1 [48,79].

Coolen and Yan [21] presented the lower and upper survival functions of the NPI

for the lifetime failure observation, so the NPI lower survival function SXn+1
(t) and

the corresponding NPI upper survival function SXn+1(t), in case of right-censored

data, respectively [48, 49]. Also, according to the previous notation, let disi+1 =

di+1
0 = xi+1 for i = 1, 2, ..., u− 1. Therefore, for t ∈ [dij, d

i
j+1) with i = 1, 2, ..., u and

j = 1, 2, ..., si, and for t ∈ [xi, xi+1) with i = 1, 2, ..., u. The lower and upper survival

functions can expressed as [48,49]

SXn+1
(t) =

1

n+ 1
ñdij

∏
r:cr≤dij

(
ñcr + 1

ñcr

)
(2.4.3)

SXn+1(t) =
1

n+ 1
ñxi

∏
r:cr≤xi

(
ñcr + 1

ñcr

)
. (2.4.4)

Equations (2.4.1) - (2.4.4) play an important role in imprecise probability the-

ory [27]. The imprecision, the difference between the upper and lower survival

functions, reflects the amount of information in the data. This imprecision is non-

zero because of the limited inferential assumptions made, and reflects the amount

of information in the data as explained previously. Note that, where we introduce

NPI lower and upper survival functions above in the case of right-censored data,

the lower survival function decreases at each observation, and the upper survival

function only at the observed failure times. This beautifully illustrates an attractive

informal interpretation of lower and upper probabilities: the lower probability for

event A reflects the information in support of event A, the upper probability (ac-

tually, 1 − P (A)) reflects the information against event A - hence also in support
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of the complementary event, which agrees with the conjugacy property. A failure

observation is clearly information against survival, therefore further reducing infor-

mation supporting survival, so both lower and upper survival functions decrease.

A right-censored observation reduces information in support of survival past that

point (smaller number of items known to survive), but it does not provide more

support against survival as the item did not fail.



Chapter 3

Statistical inference based on the

likelihood ratio test

3.1 Introduction

The development of ALT statistical modelling is typically complex and brings chal-

lenges for modelling and statistical inference. The literature tends towards creating

ever more complex models [28, 29, 32, 45]. While these may be of theoretical in-

terest, we believe that practical application of ALT can be best served by widely

applicable, easy-to-use statistical methods which feature in-built robustness. In this

chapter, we develop a new likelihood ratio test based method for analysing ALT data

with imprecise probabilities, where nonparametric predictive inference (NPI) at the

normal stress level is integrated with a parametric Arrhenius-Weibull model. This

use of a frequentist statistical test to determine the level of imprecision is the main

novelty in this chapter. This new method consists of two steps. First, we assume

the Arrhenius link function for all levels and we derive an interval for the parameter

of the Arrhenius link function by pairwise likelihood ratio tests. This interval of

parameter values enables observations of increased stress levels to be transformed

to interval-valued observations at the normal stress level, where we assume that we

have data at the normal stress level. Secondly, we use NPI at the normal stress level

for predictive inference on the failure time of a future unit operating under normal

stress, using the original data at the normal stress level and interval-valued data

23
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transformed from higher stress levels.

This chapter is organized as follows. Section 3.2, we outline the model descrip-

tion. In Section 3.3, our novel method of imprecise statistical inference is introduced.

In Section 3.4 we illustrate our proposed method in three examples. Section 3.5

presents results of simulation studies that investigate the performance of the pro-

posed method using the Arrhenius link function. Section 3.6 illustrates our method

using the power-law link function and illustrate the method using the power-law

link function in two examples. Section 3.7 presents results of simulation studies

that investigate the performance of the proposed method, where the data are sim-

ulated using the assumed power-Weibull model with different shape parameters βi

at different stress levels. Section 3.8 presents some concluding remarks.

3.2 The model

In this chapter, we consider the Arrhenius model and a Weibull lifetime distribution

for a constant-stress ALT. The Arrhenius model is based on physical or chemical

theory, and is often an appropriate model to use when the failure mechanism is

driven by temperature [60]. The Weibull distribution is often suitable for examining

component, system or product life. All these models have been introduced briefly

in Section 2.2. The Arrhenius-Weibull model is adopted to the current research on

imprecise statistical approaches to establish the use of imprecision in modelling the

nature of the relationship between stress levels and unit failure rates. The main issue

here is how to extrapolate the failure data from units tested at higher-than-normal

stress levels to units operating at the normal stress level [79]. Note that we also

consider the power-law and the Weibull lifetime distribution for a constant-stress

ALT in Section 3.6. In that section, we apply our method with the different scale

parameters αi and different shape parameters βi for the Weibull distributions for

the different stress levels i. We comments on this assumption in Section 3.6.

The model at each stress level (the two-parameter Weibull distribution) is

f(t) =
β

αi
(
t

αi
)β−1 exp

[
− (

t

αi
)β
]
. (3.2.1)
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The unknown parameters of the Weibull distribution are the shape parameter

β, and the scale parameters αi at stress level i, where αi > 0 and β > 0, and its

survival function is

P (T > t) = exp
[
−
( t
αi

)β]
.

The Arrhenius-Weibull model is specified as follows. K0 represents the stress at

the normal level. There are m ≥ 1 increased stress levels, with stress Ki at level

i ∈ {1, ...,m}, we assume that Ki increases as a function of i. In this chapter, the

Weibull distributions for different stress levels are assumed to have different scale

parameters αi > 0 for level i, but the same shape parameter β. In Section 3.6 we

also consider the generalization with different shape parameters βi for level i for

these Weibull distributions combined with power-law link function. The Arrhenius

link function for the scale parameters is

αi = α0 exp
( γ
Ki

− γ

K0

)
. (3.2.2)

Using this model with varying temperatures (in Kelvin) as stress levels, K0 is

the normal temperature at stress level 0, Ki is the higher temperature at stress level

i, and γ > 0 is the parameter of the Arrhenius link function model.

Using this link function model, an observation ti at the stress level i, subject

to stress Ki, can be transformed to stress level 0. For fixed γ the transformed

observation denoted by ti→0(γ) from level i to level 0 is given by the equation

ti→0(γ) = ti exp

(
γ

K0

− γ

Ki

)
. (3.2.3)

Now, we define the model through the probability density function as:

f(ti;α, β, γ,K) =
β

αi

(
ti→0(γ)

αi

)β−1
exp

(
−
(
ti→0(γ)

αi

)β)
, (3.2.4)

where the Arrhenius link function for scale parameters αi should be identified to

establish a connection between the different stress levels i.
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Consider t
∼

= {t01, ...t0n0
, t11, ...t

1
n1
, ..., tm1 , ...t

m
nm} and K = {K0, ..., Km}, where t

∼
is

the data and it should be used for the whole data if denoted including the transfor-

mations, and K denotes the stress applied to each level.

The likelihood function is defined as

L(t
∼

;α, β, γ,K) =
m∏
j=0

nj∏
i=1

f
(
tji ;α, β, γ,K

)
.

So there are in total three parameters that need to be estimated to fit the com-

plete model, α0, β, and γ. In this chapter, we will apply the pairwise likelihood

ratio test to create an interval for the parameter γ of the link function, as presented

in Section 3.3. We assume the same β for all stress levels, so differences between

stress levels are only modelled through the αi, and hence in the model through the

α0 and γ parameters of the link function between different stress levels. For ease

of presentation, we assume that there are no right-censored observations and that

there are failure observations at the normal stress level. We briefly comment on

these assumption in Section 3.8.

3.3 ALT inference using likelihood ratio tests

To investigate equality of two independent failure data groups, possibly including

right-censored observations, the likelihood ratio test can be used [63]. This is a

popular statistical test that can be applied to investigate equality of the probability

distribution of two independent groups, which has been briefly introduced in Section

2.3.1 [2, 60].

In this section we present new predictive inference based on ALT data and the

likelihood ratio test. We use NPI at the normal stress level, with the fully parametric

model used in our new statistical method analysing data from ALT. The use of NPI

here provides lower and upper survival functions for a future observation at the

normal stress level, based on all failure data.

This new statistical method for data in ALT divides into two steps. First, the

basic Arrhenius-Weibull model is adopted [60], and the pairwise likelihood ratio test

is used between the stress levels Ki and stress level K0, to obtain the intervals for the
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parameter γ for which we do not reject the null hypothesis that the data transformed

from stress level i to normal stress level 0, and the original data obtained at the

normal stress level 0, come from the same Weibull distribution. The hypothesis test

we use in this chapter is

 H0 : γ = γ′

H1 : γ 6= γ′,

where γ ∈ R. The test statistics can be defined as

LR =
L(t
∼

; α̃, β̃, γ′, K)

L(t
∼

; α̂, β̂, γ̂, K)

where α̃, β̃ are such that sup(α,β)∈R+×R+ L(t
∼

;α, β, γ′, K) = L(t
∼

; α̃, β̃, γ′, K)

and α̂, β̂, γ̂ are such that sup(α,β,γ)∈R+×R+×R L(t
∼

;α, β, γ,K) = L(t
∼

; α̂, β̂, γ̂, K).

The probability density function of the Arrhenius-Weibull model is assumed in

this chapter to describe the failure time at a fixed stress level, and its parameters are

therefore maximized in the likelihood ratio test. There are in total three parameters

that need to be estimated under the alternative hypothesis; α0, β, and γ. But, we

only estimate two parameters which are α0 and β, and fix the parameter γ under

the null hypothesis. Under the null hypothesis, the LR follows a χ1
2 distribution.

To get [ γ
i
, γi], for each value of γ we would have different α̂0 and β̂ but we do not

use these any further in our method.

For each i = 1, ...,m, we find γ
i
, the smallest value for γ′ for which we do not

reject the null hypothesis, and γi, the largest value for γ′ for which we do not reject

the null hypothesis. Then we define γ = max {min γ
i
, 0} and γ = max γi. Note

that, because of the physical interpretation of generally faster failures with increased

stress levels, we exclude negative values which leads to some γ values being set at 0.

In this thesis, we will always restrict γ to non-negative values. We find the γ
i

and

γi numerically using the statistical software R.

Note that, we do not make a confidence statement for the final NPI lower and

upper survival functions, so we do not explicitly quantify the prediction accuracy. If

indeed the main assumption is valid, that increased stress tends to decreased failure
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times, then negative γi are typically resulting from statistical variation and would

disappear for larger samples.

One may wish to allow γ to be negative, which may e.g. be reasonable if it turned

out that higher stress level could possibly improve a unit’s failure time. However,

in normal ALT applications there tends to be sufficient knowledge about the effect

of the stress on the failure times that such cases would be rare, hence we do not

consider negative values for γ values in this thesis. It should be emphasized though

that our inferential method could still be used if negative values for lower γ were

allowed.

In the second step, we apply the data transformation using γ for all levels i =

1, ...,m to get transformed data at level 0, which are then used together with the

original data at the normal stress level, to derive the NPI lower survival function

S. Similarly, we apply the data transformation using γ for all levels i = 1, ...,m

to get transformed data at level 0, which are then used together with the original

data at the normal stress level, to derive the NPI upper survival function S. Note

that each observation at an increased stress level transforms into an interval-valued

observation at the normal stress level 0, where the width of an interval is larger for

an observation from a higher stress level.

Note that, if the model fits really well, we expect most γ
i

values to be quite

similar, as well as most γi values. If the model fits poorly, γ
i

are most probably

very different, or γi are very different, or both. Hence, in case of poor model fit, the

resulting interval [γ, γ] tends to be wider than in the case of good model fit. If the

model assumed is not too far from reality, we would expect the widest interval for

the parameter γ to come from the likelihood ratio test applied to levels 1 and 0.

If the model assumed is not too far from reality, we would expect the widest

interval for the parameter γ to come from the likelihood ratio test applied to levels

1 and 0. If the model fits well, a level 1 observation is transferred to a smaller interval

on level 0 than a level 2 interval, if the transferred intervals are close, in particular if

they are overlapping. In the overlapping case, because the level 2 interval is wider,

the left and right end points of these intervals from level 2 are further apart, which

implies that the γ in the null hypothesis will be rejected in more cases. Hence, the
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interval [γ, γ] form level 1 will be wider than the interval [γ, γ] form level 2 (in most

cases, due to variability in the samples not in all cases). If the model is worse than

we would expect more often that γ = γ
i

for an i 6= 1, or γ = γi for an i 6= 1. If the

model assumptions are not fully correct, for example, using some misspecification

cases or there is a lot of overlap between the data, then latter can happen.

Although our method involved multiple pairwise tests, we do not aim to com-

bine these into a single test of a hypothesis involving all groups simultaneously. A

multiple testing (comparison) procedure arises in many scenarios, where two groups

of data are compared over time with each other [16, 61]. A well known scenario

that one may be interested in testing is the comparison between two groups based

on confidence level [61]. While we use pairwise tests in our approach, we do not

combine these into an overall confidence level statement for the resulting inference.

Instead we use NPI to derive the lower and upper predictive survival functions and

we investigate the performance of our predictive method separately via simulations.

If the assumed model is fully correct then the lower and upper γ will form an

interval with at least 1 − α confidence level, with α the significance level for each

pairwise test. However, we explicitly develop our method for robust inference as

the basic assumed model will in practice not be ‘correct’, and acknowledging this

makes confidence statements hard to justify. This is an interesting topic for future

research. The method proposed in this section is illustrated by three examples

using simulated data and real data in Section 3.4, and studied in more detailed by

simulation in Section 3.5.

3.4 Examples

In this section we present three examples to illustrate the method presented in

Section 3.3. In Example 3.4.1 we simulate n = 10 observations at all levels using

the same model for the simulation as assumed for the analysis with our proposed

method in Section 3.3. In Example 3.4.2, we simulate n = 20 observations at all

levels to show the effect of the larger sample that correspond to the model for the link

function we assume for the analysis in the Example 3.4.1, and applied our proposed



3.4. Examples 30

methods in Section 3.3. In Example 3.4.3 we use a data set from the literature. In

this thesis, our method does not require the same number of observations at every

level. However, in many situations we show examples where ni are all the same, so

in this case we call it n.

Example 3.4.1. This example consists of two cases. In Case 1 we simulate data

at all levels using a Weibull distribution at each stress level and we assume the

Arrhenius link function we assume for the analysis. In Case 2 we change these

data such that the assumed link function will not provide a good fit anymore and

we investigate the effect on the interval [γ, γ] and on the corresponding lower and

upper predictive survival functions for a future observation at the normal stress

level.

We assume the normal temperature level to be K0 = 283, and the increased

temperature levels to be K1 = 313 and K2 = 353 Kelvin. We generate ten obser-

vations from a Weibull distribution at each stress level linked by the Arrhenius link

function. The Weibull distribution at level K0 has shape parameter β = 3 and scale

parameter α0 = 7000, and the Arrhenius parameter’s set at γ = 5200. We keep the

same shape parameter at each temperature, and the scale parameters are linked by

the Arrhenius relation, which leads to α1 = 1202.942 at level K1 and α2 = 183.091

at level K2. Ten failure times were simulated at each temperature, so data for a

total of 30 units is used in the study. The failure times are given in Table 3.1.

To illustrate the method discussed in Section 3.3 using these data, we assume

the Weibull distribution at each stress level and the Arrhenius link function for the

data. To obtain the intervals [γ
i
, γi] of the values for γ for which we do not reject

the null hypothesis, we used the pairwise likelihood ratio test between Ki for i = 1, 2

and K0. The resulting intervals [γ
i
, γi] for three significance levels are given in Table

3.2. Note that we transformed the data using the overall values [γ, γ], derived as the

minimum and maximum corresponding values for the pairwise tests, respectively.

In the second step of our method, we transformed the data using the [γ, γ]

values. All observations at the increased stress levels were transformed to the normal

stress level. Therefore, the observations at the increased stress levels K1 and K2

are transformed to interval-valued observations at the normal stress level K0. We
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Case K0 = 283 K1 = 313 K2 = 353 K1 = 313 (×1.4) K2 = 353 (×0.4)

1 2692.596 241.853 74.557 338.595 29.823

2 3208.336 759.562 94.983 1063.387 37.993

3 3324.788 769.321 138.003 1077.050 55.201

4 5218.419 832.807 180.090 1165.930 72.036

5 5417.057 867.770 180.670 1214.878 72.279

6 5759.910 1066.956 187.721 1493.739 75.088

7 6973.130 1185.382 200.828 1659.535 80.331

8 7690.554 1189.763 211.913 1665.668 84.765

9 8189.063 1401.084 233.529 1961.517 93.412

10 9847.477 1445.231 298.036 2023.323 119.214

Table 3.1: Failure times at three temperature levels (first three columns) and

changed failure times (last two columns), Example 3.4.1.

Significance level 0.01 0.05 0.10

Stress level γ
i

γi γ
i

γi γ
i

γi

Case 1: K1 K0 4060.018 6605.752 4424.881 6261.168 4593.700 6100.653

K2 K0 4377.043 5602.321 4550.205 5434.908 4630.511 5357.037

Case 2: K1×(1.4), K0 3066.539 5612.273 3431.402 5267.689 3600.221 5107.174

K2×(0.4), K0 5684.708 6909.985 5857.870 6742.573 5938.175 6664.701

Table 3.2: [γi, γi] for Example 3.4.1.
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Figure 3.1: Some transformed data using [4060.018, 6605.752], Example 3.4.1.

briefly illustrate this in Figure 3.1, using only three points of the data at each level,

therefore, we have six lines going down from each level. We transformed the data

from the higher stress levels K1 and K2 using [γ, γ] = [4060.018, 6605.752] with 0.01

level of significance, mixed with the original data at the normal stress level K0.

Note that, in Figure 3.1 the two largest transformed data points are the γ and γ

transformations of the largest observation from level K2. So, this illustrates a key

property of our method, that data transformed from higher levels tend to be wider

intervals at the normal level.

The NPI lower survival function is based on the original data at level 0 together

with the transformed data from the stress levels K1 to K0 and K2 to K0 using γ.

Similarly, the NPI upper survival function is based on the original data at level 0

together with the transformed data from the stress levels K1 to K0 and K2 to K0

using γ. The γ transformed the points to the smallest values and therefore is the

most pessimistic case, which leads to the lower survival function S. The γ trans-

formed the points to the largest values and therefore is the most optimistic case,

which leads to the upper survival function S. In Case 1, we have γ = 4060.018 and

γ = 6605.752, γ = 4424.881 and γ = 6261.168, and γ = 4593.700 and γ = 6100.653,

which they are all equal to the values [γ, γ] that results from the pairwise test K1,

K0 with significance levels 0.01, 0.05 and 0.10, respectively. We used all the above γ

and γ values to transform the data to the normal stress level 0, see Figure 3.2(a). In
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this figure, the lower survival function S is labeled as S (γ
i
) and the upper survival

function S is labeled as S (γi). This figure shows that lower significance level leads

to more imprecision and nesting for the NPI lower and upper survival functions.

In Case 2, we illustrate our method in case of misspecification. The goal of

our method is to study whether or not a simple model will give robustness in case

of misspecification. We multiply the data at level K1 by 1.4 and in addition we

multiply the data at level K2 by 0.4. The corresponding data values are given in the

last two columns in Table 3.1. In this case, we have γ = 3066.539 and γ = 6909.985,

γ = 3431.402 and γ = 6742.573, and γ = 3600.221 and γ = 6664.701 for significance

levels 0.01, 0.05 and 0.10, respectively. We used all the above γ and γ values to

transform the data to the normal stress level 0, see Figure 3.2(b). Figure 3.2(b) also

shows that lower significance level results in more imprecision for the NPI lower and

upper survival functions. In Case 2, we can see that the [γi, γi] intervals for the two

pairwise comparisons are fully disjoint unlike in Case 1. Note that in Case 2, the

observations at level K1 have increased, leading to smaller γ
1

and γ1 values, which,

in turn, leads to the lower and upper survival functions to decrease in comparison to

Case 1. Also, the observations at stress level K2 in Case 2 have decreased, resulting

in larger values for γ
2

and γ2, and this leads to the lower and upper survival functions

to increase in comparison to Case 1. Therefore, it is obvious that using the γ and

γ values gives substantially more imprecision in our NPI method in Case 2 than in

Case 1. This illustrates that, in case of poor model fit, the NPI lower and upper

survival functions in Figure 3.2(b), using our method as discussed in Section 3.3,

have more imprecision and more nesting than if the model fits well.
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(a) Case 1
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Figure 3.2: The NPI lower and upper survival functions, Example 3.4.1.
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Example 3.4.2. The previous example illustrated our methods using a data set

with n = 10 observations at each stress level. In this example, we use a larger data

set to explain the effect of the amount of the data on our inference. We simulated

twenty failure times at each of three stress levels, so a total of 60 failure times is used

in the study. Note that we use the same temperature stress levels as in Example

3.4.1. The Arrhenius-Weibull model also keeps the same (α, β, and γ) parameters

in the simulation as in Example 3.4.1. The failure times are given in Table 3.3.

The resulting intervals [γ
i
, γi] for three significance levels using our method are

given in Table 3.4. Comparing the resulting intervals [γ
i
, γi] in Tables 3.2 and 3.4,

shows that based on more data at each stress level, there is less imprecision for the

larger value of n, which is due to the likelihood ratio test, so fewer values of γ in

the null hypothesis are not rejected. In this example, we have γ = 4117.376 and

γ = 5712.309, γ = 4324.934 and γ = 5506.789, and γ = 4425.681 and γ = 5406.786,

which they are all equal to the values [γ, γ] that results from the pairwise test K1

to K0 with significance levels 0.01, 0.05 and 0.10, respectively. Note further that

the NPI part also has less imprecision for the larger of n. Figure 3.3 shows the NPI

lower and upper survival functions which are based on the original data at level 0

together with the transformed data from the stress levels K1 to K0 and K2 to K0

using γ and γ, respectively, which also shows less imprecision and nesting compared

to Figure 3.2. This example shows that based on more data the imprecision in the

resulting intervals [γ, γ] decreases.

Example 3.4.3. The method proposed in Section 3.3 is now applied to a data set

from the literature [71], resulting from a temperature-accelerated life test. The au-

thor did not provide a detailed description of the set-up of the experiment. The time-

to-failure data were collected at three temperatures (in Kelvin): K0 = 393, K1 =

408, and K2 = 423, with 393 the normal temperature for the process of interest.

Ten units were tested at each temperature, so a total of 30 units where used in the

study. All units failed during the experiment. The failure times, in hours, are given

in Table 3.5.

For the data in Table 3.5, we have assumed the same model as discussed in

Section 3.1, so with a Weibull failure time distributions at each stress level and the
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Case K0 = 283 K1 = 313 K2 = 353

1 1407.360 489.851 97.156

2 2692.596 624.058 106.588

3 3208.336 690.951 113.232

4 3324.788 737.428 114.521

5 4419.943 825.673 124.121

6 4476.732 888.376 131.099

7 4846.159 906.701 136.292

8 5049.613 962.071 138.762

9 5218.419 1071.215 153.764

10 5417.057 1082.967 157.405

11 5759.910 1156.457 159.132

12 6208.689 1183.222 165.528

13 6897.815 1187.228 165.589

14 6923.310 1233.356 171.741

15 6973.130 1319.475 176.731

16 7690.554 1392.307 191.887

17 8152.997 1430.277 205.179

18 8189.063 1534.328 241.959

19 8409.894 1570.710 253.354

20 9847.477 1958.147 284.655

Table 3.3: Failure times at three temperature levels, Example 3.4.2.

Significance level 0.01 0.05 0.10

Stress level γ
i

γi γ
i

γi γ
i

γi

K1 K0 4117.376 5712.309 4324.934 5506.789 4425.681 5406.786

K2 K0 4731.700 5492.383 4830.244 5392.011 4878.140 5346.543

Table 3.4: [γi, γi] for Example 3.4.2.
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Figure 3.3: NPI lower and upper survival functions, Example 3.4.2.

Arrhenius link function between different stress levels. Then the pairwise likelihood

ratio test is used separately between level Ki and K0, for i = 1, 2, to derive the

intervals [γ
i
, γi] for the value of the parameter γ of the Arrhenius link function, such

that the null hypothesis that two groups of failure data (the transformed data from

level i and the real data from level 0) come from the same underlying distribution, is

not rejected for values of γ in this interval. The resulting intervals [γ
i
, γi] are given

in Table 3.6, for three test significance levels.

Note that, because the data corresponding to the different stress levels already

have quite some overlap, the likelihood ratio tests even did not rule out negative

values for γ. However, because of the physical interpretation of generally faster

failures with increased temperature, we exclude negative values for γ, so we define

γi = max {min γ
i
, 0}, as discussed in Section 3.3. Following the method presented

in this chapter, we transformed the data using the overall values [γ, γ], derived as

the smallest and largest corresponding values for the pairwise tests, respectively.

For the significance levels 0.01, 0.05, and 0.1, the values of γ are always 0 in this



3.4. Examples 38

Case K0 = 393 K1 = 408 K2 = 423

1 3850 3300 2750

2 4340 3720 3100

3 4760 4080 3400

4 5320 4560 3800

5 5740 4920 4100

6 6160 5280 4400

7 6580 5640 4700

8 7140 6120 5100

9 7980 6840 5700

10 8960 7680 6400

Table 3.5: Failure times at three temperature levels, Example 3.4.3.

Significance level 0.01 0.05 0.10

Stress level γ
i

γi γ
i

γi γ
i

γi

K1 K0 −1585.607 4881.225 −692.940 3988.558 −276.575 3572.193

K2 K0 188.348 3540.639 651.091 3077.896 866.927 2862.060

Table 3.6: [γi, γi] for, Example 3.4.3.

case, and for γ we have, 4881.225, 3988.558 and 3572.193, respectively. Based on

the original data at level 0 together with the data transformed from the stress levels

K1 to K0 and K2 to K0 using γ, the NPI approach provides the NPI lower survival

function. Similarly, but using γ for the transformation, we derived the NPI upper

survival function.

The resulting lower and upper survival functions are presented in Figure 3.4,

where of course the three different significant levels lead to the same lower survival

function due to the restriction for the γ values to be non-negative. In this figure,

the lower survival function S, denoted by S (0), is the same for all these significance

levels. The upper survival function S is labeled as S (γi). This figure shows that

a smaller significance level leads to more imprecision for the NPI lower and upper
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Figure 3.4: The NPI lower and upper survival functions, Example 3.4.3.

survival functions, which is directly resulting from the fact that the intervals of

not rejected values of γi in the pairwise tests will be nested, becoming larger if the

significance level is decreased. These lower and upper survival functions can also

be used to deduce corresponding lower and upper values for percentiles, which are

found in the usual way by inverting the respective functions. These functions can

also be used as inputs into decision processes, for example with regard to setting

warranty policies, this is the topic of Chapter 5.

3.5 Simulation studies

In this section, we investigate the performance of the imprecise predictive statistical

method for ALT data in this chapter. In this section, we first study the performance

of our proposed method by simulations when considering the assumed Arrhenius-



3.5. Simulation studies 40

Weibull model as the true underlying model. Thereafter, we consider cases of mis-

specification.

To investigate the predictive inference performance of our new method for ALT

data, we have conducted a simulation study. We assumed the temperature stress

levels to be K0 = 283, K1 = 313, and K2 = 353. In this analysis, we ran the

simulation 10,000 times with the data simulated from the model given in Section

3.1, with the Weibull distribution with β = 3, α = 7000, and the Arrhenius link

function parameter γ = 2000. We have simulated n = 10, 50, 100 observations at

each stress level. We applied the method described in Section 3.3, with levels of

significance 0.01, 0.05, and 0.10. To evaluate the performance of the method, we

check the results by simulating a future observation at the normal stress level K0,

and we consider if it mixes well among the data at level K0, where we use both

the actual data at level K0 and the data transformed to the normal stress level K0.

We examined the performance by considering the quartiles of NPI lower and upper

survival functions for q = 0.25, 0.50, 0.75, and whether or not the future observation

at the normal stress level has exceeded these quartiles in the right proportions. One

can similarly use different quantiles, but the quartiles provide a good indicator of

the overall performance of our method.

In Case A, we conducted the simulation with the assumed Arrhenius-Weibull

model, hence with data generated from the same model as used for our method,

hence we expect a good performance, which will require that the future observation

for each run at the normal stress level has exceeded the first, second, and third

quartiles of the NPI lower survival functions just over proportions 0.75, 0.50 and

0.25 of all runs, respectively, and for the NPI upper survival functions just under

proportions 0.75, 0.50 and 0.25. Table 3.7 and Figures 3.5-3.7 present the results

of the performance of our method for this simulation. All cases in Table 3.7 and

Figures 3.5-3.7 show an overall good performance of the proposed method, with

levels of significance 0.01, 0.05, and 0.10, and with sample sizes n = 10, 50, 100.

Note that the first, second, and third quartiles in these figures are denoted qL0.25

and qU0.25, qL0.50 and qU0.50, and qL0.75 and qU0.75 corresponding to the NPI

lower and upper survival functions, respectively. We note that for corresponding
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proportions with larger values of n, the differences between lower and upper survival

functions tend to decrease, as shown in Figure 3.7. That means that when have more

data, the imprecision in the NPI lower and upper survival functions decreases. As

mentioned in Section 3.3, if the model fits very well or perfectly, then in most cases

γ = γ
1
, and γ = γ1. Table 3.8 shows that when we simulate from the assumed

Arrhenius-Weibull model out of 10,000 runs with 0.05 level of significance, hence

with data generated from the same model, that in most cases we have indeed that

γ = γ
1
, and γ = γ1. From these simulations, we conclude that using our approach

with the Arrhenius-Weibull model, which illustrated our method achieves suitable

predictive inference if the model assumptions are fully correct.
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K1K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9386 0.4960

0.8227 0.1407

0.5670 0.0197

0.8565 0.6287

0.6726 0.3208

0.4314 0.0900

0.8293 0.6717

0.6349 0.3684

0.3818 0.1245

0.05 0.25

0.50

0.75

0.9058 0.5531

0.7557 0.2192

0.5049 0.0470

0.8326 0.6585

0.6322 0.3660

0.3966 0.1238

0.8131 0.6938

0.6028 0.4000

0.3511 0.1531

0.1 0.25

0.50

0.75

0.8871 0.5804

0.7143 0.2604

0.4664 0.0667

0.8214 0.6730

0.6137 0.3866

0.3755 0.1415

0.8048 0.7030

0.5880 0.4155

0.3351 0.1681

K2K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.8795 0.5054

0.6974 0.2869

0.4588 0.0649

0.8088 0.6923

0.5919 0.4072

0.3525 0.1599

0.7974 0.7132

0.5712 0.4361

0.3162 0.1838

0.05 0.25

0.50

0.75

0.8538 0.6418

0.6524 0.3392

0.4073 0.1035

0.7945 0.7073

0.5699 0.4287

0.3287 0.1792

0.7881 0.7220

0.5552 0.4518

0.2998 0.2005

0.1 0.25

0.50

0.75

0.8398 0.6589

0.6285 0.3644

0.3818 0.1239

0.7881 0.7146

0.5594 0.4411

0.3175 0.1900

0.7835 0.7260

0.5470 0.4605

0.2917 0.2079

γ and γ n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9427 0.4925

0.8277 0.1352

0.5732 0.0149

0.8577 0.6273

0.6749 0.3189

0.4333 0.0886

0.8299 0.6708

0.6363 0.3672

0.3834 0.1235

0.05 0.25

0.50

0.75

0.9122 0.5459

0.7664 0.2087

0.5150 0.0376

0.8347 0.6562

0.6362 0.3625

0.4003 0.1203

0.8144 0.6920

0.6058 0.3982

0.3538 0.1500

0.1 0.25

0.50

0.75

0.8957 0.5714

0.7299 0.2485

0.4792 0.0546

0.8238 0.6700

0.6202 0.3818

0.3812 0.1366

0.8074 0.7002

0.5920 0.4122

0.3384 0.1642

Table 3.7: Proportion of runs with future observation greater than the quartiles.

Case A.
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min γ and the max γ n = 10 n = 50 n = 100

γ = γ
1

γ = γ1

γ = γ
1

and γ = γ1

8699

8675

7374

8963

9003

7966

9022

9087

8109

Table 3.8: Number of the simulation runs with γ = γ1 or γ = γ1 or both out of

10,000 simulation runs with 0.05 level of significance. Case A.
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(a) K1 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9386

  0.496

  0.8227

  0.1407

  0.567

  0.0197

(b) K1 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9056

  0.5531

  0.7557

  0.2192

  0.5049

  0.047

(c) K1 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8871

  0.5804

  0.7143

  0.2604

  0.4664

  0.0667

(d) K2 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8795

  0.6054

  0.6974

  0.2869

  0.4588

  0.0649

(e) K2 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8538

  0.6418   0.6524

  0.3392

  0.4073

  0.1035

(f) K2 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8398

  0.6589
  0.6285

  0.3644   0.3818

  0.1239

(g) Using γ, γ, (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9427

  0.4925

  0.8277

  0.1352

  0.5732

  0.0149

(h) Using γ, γ, (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9122

  0.5459

  0.7664

  0.2087

  0.515

  0.0376

(i) Using γ, γ, (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8957

  0.5714

  0.7299

  0.2485

  0.4792

  0.0546

Figure 3.5: Proportion of runs with future observation greater than the quartiles, n = 10.

Case A.
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(a) K1 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8565

  0.6287
  0.6726

  0.3208

  0.4314

  0.09

(b) K1 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8325

  0.6585
  0.6322

  0.366
  0.3966

  0.1238

(c) K1 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8214

  0.673

  0.6137

  0.3866   0.3755

  0.1415

(d) K2 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8088

  0.6923

  0.5919

  0.4072

  0.3525

  0.1599

(e) K2 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.7945

  0.7073

  0.5699

  0.4287

  0.3287

  0.1792

(f) K2 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.7881

  0.7146

  0.5594

  0.4411

  0.3175

  0.19

(g) Using γ, γ, (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8577

  0.6273

  0.6749

  0.3189

  0.4333

  0.0886

(h) Using γ, γ, (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8347

  0.6562
  0.6362

  0.3625
  0.4003

  0.1203

(i) Using γ, γ, (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8238

  0.67

  0.6202

  0.3818   0.3812

  0.1366

Figure 3.6: Proportion of runs with future observation greater than the quartiles, n = 50.

Case A.
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(a) K1 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8293

  0.6717
  0.6349

  0.3684   0.3818

  0.1245

(b) K1 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8131

  0.6938

  0.6028

  0.4

  0.3511

  0.1531

(c) K1 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8048

  0.703

  0.588

  0.4155

  0.3351

  0.1681

(d) K2 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.7974

  0.7132

  0.5712

  0.4361

  0.3162

  0.1838

(e) K2 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.7881

  0.722

  0.5552

  0.4518

  0.2998

  0.2002

(f) K2 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.7835

  0.726

  0.547

  0.4605

  0.2917

  0.2079

(g) Using γ, γ, (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8299

  0.6708
  0.6363

  0.3672   0.3834

  0.1235

(h) Using γ, γ, (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8144

  0.692

  0.6058

  0.3982
  0.3538

  0.15

(i) Using γ, γ, (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8074

  0.7002

  0.592

  0.4122

  0.3384

  0.1642

Figure 3.7: Proportion of runs with future observation greater than the quartiles, n = 100.

Case A.
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As mentioned before, the goal in this chapter is to develop a quite straightforward

method of predictive inference based on few assumptions, where the imprecision in

the link function between different stress levels provides robustness against the neces-

sary assumptions. Next, we investigate robustness in case of model misspecification

in the next three simulation cases, and study whether or not a simple model will

give robustness in case of misspecification. In Case 1, we used the same scenario as

in the Case A simulation, but with the shape parameter β = 2 for each level in the

analysis, while in Case 2 we changed to the simulated data in Case A such that the

assumed link function may not provide a good fit. In Case 3, we look a situation

that is more likely in practice, namely where the Arrhenius model is assumed for

the analysis but the data is generated from the Eyring-Weibull model.

In Case 1, we are dealing with a particular misspecification of the model for

statistical inference for ALT data [50, 52]. Table 3.9 presents the results of the

predictive performance of our method. We used the same scenario as in the Case A

simulation so we simulate from a Weibull distribution with β = 3 but we assumed

wrongly that β = 2 for each level in the analysis. Now only the scale parameter α

and the parameter γ of the link function are explicitly maximized in the likelihood

ratio. In comparison to the Case A simulation results where the shape parameter

β was estimated, there is a slight more imprecision on the quartiles in Table 3.9.

From Table 3.7 and Table 3.9, the effect of fixing the shape parameter β = 2 in

the analysis can also be seen on the quartiles of the NPI lower and upper survival

functions for q = 0.25, 0.50, 0.75, which is reflected by more imprecision for this case

than in Case A, using the resulting interval [γ, γ] in our method, as presented in

Section 3.3. Also, we checked whether or not the simulated future observation at

the normal stress level has exceeded these quartiles in the right proportions. The

imprecision in the NPI lower and upper survival functions with larger values of n

in Table 3.9 for this case is wider, in comparison to the imprecision in the NPI

lower and upper survival functions with larger values of n in Table 3.7 for Case A.

Throughout this simulation, when we fixed the shape parameter β = 2 in the fitted

model, our method provided levels of robustness against the misspecification.

In Case 2, we investigate the predictive performance of our method for ALT data,
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with a change to the data such that the assumed link function may not provide a

good fit. We show the change to the resulting quartiles of NPI lower and upper

survival functions for q = 0.25, 0.50, 0.75, and we check if the simulated future

observation at the normal stress level K0 has exceeded these quartiles in the right

proportions. To illustrate this, we generated data sets as before with n = 10, 50, 100

observations at each stress level using the Arrhenius-Weibull model. But now all

the data at stress level K1 are multiplied by 1.2, and all the data at level K2 are

multiplied by 0.8. This is similar to what was done in Example 3.4.1 to illustrate

our method in case of misspecification. We ran the simulation 10,000 times. Using

these generated data, we again applied our method as described in Section 3.3, with

levels of significance 0.01, 0.05, and 0.10. We performed the likelihood ratio test

within the statistical software R to the simulated data set. All the results in Case 2

provide an insight into whether or not the presented method shows some robustness

against the misspecification case considered. Table 3.10 presents the results of these

simulations with n = 10, 50, 100.

As explained previously, we required that the future observation for each run at

the normal stress level has exceeded the first, second, and third quartiles of the NPI

lower survival functions just over proportions 0.75, 0.50 and 0.25 of all runs, respec-

tively, and for the NPI upper survival functions just under proportions 0.75, 0.50

and 0.25. However, for n = 50, 100 in this simulation, there are a few cases for

which the future observation for each run at the normal stress level has exceeded

the first, second, and third quartile (qU0.25, qU0.50, qU0.75). These correspond

to the NPI upper survival functions just over 0.75, 0.50, 0.25 of the pairwise level

K1× (1.2) to K0, respectively, see Table 3.10, and they are highlighted by bold font

in Table 3.10, whereas they are only just over these proportions (qU0.25, qU0.50,

qU0.75). Exceeding the first, second, and third quartile (qU0.25, qU0.50, qU0.75)

of the NPI upper survival function just over 0.75, 0.50, 0.25 is due to the use of this

misspecification case where the data at stress level K1 (K0) are multiplied by 1.2

(0.8). There are slight increases for qU0.25, qU0.50, qU0.75, which means that we

have too many observations passing these quartiles from the upper 0.75, 0.50, 0.25.

It seems that the points 0.75, 0.50, 0.25 occurred a bit earlier, which is related to
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the effect of multiplying the data by 1.2 for the stress levels K1 × (1.2) to K0. This

is in line with our expectation, which is mainly due to the misspecification case we

assumed. Note that, the smaller significance level leads to more imprecision for the

NPI lower and upper survival functions. Further note that in this simulation, the ob-

servations at the stress level K1 have increased compared to the earlier simulations,

resulting in smaller γ1 and γ1, and hence possibly smaller γ and γ, compared to the

simulation results in Table 3.7 for Case A where the assumed model assumptions

for the analysis were fully correct. Also, the data at level K2× (0.8) have decreased,

resulting in larger γ2 and γ2 and hence possibly larger γ and γ, in comparison to

the simulation results in Table 3.7.

Table 3.11 shows the numbers of the simulation runs with γ = γ1 or γ = γ1

(or both) for this case considered, out of 10,000 simulation runs with 0.05 level of

significance. It shows that, when we use the simulated data for this case, most

values come from level K1 but only few of the γ come from level K1 in comparison

to the simulation in Table 3.8 which Table 3.11 is related to. Note that, the resulting

intervals at level K2× (0.8) become larger, which explains why there are more cases

where the γ comes from γ2 in comparison to Case A simulation results in Table 3.8.

Therefore, in case of worse model fit, the NPI lower and upper survival functions for

q = 0.25, 0.50, 0.75, using our proposed method discussed in Section 3.3, have more

imprecision.
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K1K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9524 0.4640

0.8432 0.0915

0.5807 0.0028

0.8727 0.6028

0.7047 0.2859

0.4629 0.0795

0.8599 0.6357

0.6913 0.3120

0.4400 0.0831

0.05 0.25

0.50

0.75

0.9169 0.5211

0.7686 0.1542

0.5056 0.0112

0.8396 0.6336

0.6447 0.3336

0.4019 0.0995

0.8339 0.6669

0.6450 0.3625

0.3910 0.1193

0.1 0.25

0.50

0.75

0.8941 0.5413

0.7230 0.1878

0.4600 0.0221

0.8193 0.6518

0.6076 0.3521

0.3752 0.1151

0.8218 0.6945

0.6217 0.4096

0.3663 0.1618

K2K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.8828 0.5851

0.7026 0.2563

0.4514 0.0447

0.8196 0.6791

0.6096 0.3971

0.3700 0.1518

0.8118 0.6982

0.6012 0.4088

0.3472 0.1565

0.05 0.25

0.50

0.75

0.8524 0.6135

0.6491 0.3076

0.3939 0.0862

0.7998 0.6960

0.5780 0.4161

0.3338 0.1683

0.7976 0.7135

0.5740 0.4368

0.3186 0.1834

0.1 0.25

0.50

0.75

0.8356 0.6029

0.6169 0.3132

0.3601 0.1266

0.7869 0.7038

0.5587 0.4258

0.3165 0.1781

0.7910 0.7240

0.5622 0.4584

0.3068 0.2042

γ and γ n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9539 0.4623

0.8468 0.0889

0.5844 0.0027

0.8748 0.5958

0.7081 0.2757

0.4667 0.0656

0.8602 0.6356

0.6915 0.3118

0.4402 0.0826

0.05 0.25

0.50

0.75

0.9216 0.5089

0.7779 0.1484

0.5184 0.0222

0.8450 0.6303

0.6522 0.3267

0.4085 0.0948

0.8357 0.6663

0.6481 0.3614

0.3938 0.1177

0.1 0.25

0.50

0.75

0.9017 0.5064

0.7369 0.1727

0.4782 0.0580

0.8258 0.6476

0.6182 0.3474

0.3824 0.1108

0.8243 0.6896

0.6258 0.4008

0.3714 0.1519

Table 3.9: Proportion of runs with future observation greater than the quartiles,

β = 2 in the fitted model. Case 1.
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K1 × (1.2), K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9684 0.5460

0.8544 0.2169

0.5674 0.0501

0.9179 0.7178

0.7662 0.4495

0.4701 0.1909

0.8995 0.7575

0.7398 0.5044

0.4467 0.2421

0.05 0.25

0.50

0.75

0.9487 0.6200

0.8145 0.3172

0.5236 0.1020

0.9013 0.7468

0.7370 0.4931

0.4466 0.2316

0.8857 0.7770

0.7183 0.5373

0.4271 0.2689

0.1 0.25

0.50

0.75

0.9353 0.6551

0.7872 0.3607

0.4972 0.1333

0.8933 0.7608

0.7208 0.5141

0.4350 0.2499

0.8785 0.7883

0.7072 0.5530

0.4169 0.2815

K2 × (0.8), K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.8679 0.5767

0.6690 0.2470

0.4135 0.0481

0.7896 0.6642

0.5596 0.3710

0.3106 0.1303

0.7778 0.6918

0.5368 0.3960

0.2788 0.1479

0.05 0.25

0.50

0.75

0.8379 0.6135

0.6209 0.3024

0.3675 0.0793

0.7756 0.6793

0.5377 0.3928

0.2864 0.1470

0.7648 0.7011

0.5204 0.4171

0.2637 0.1621

0.1 0.25

0.50

0.75

0.8232 0.6307

0.5976 0.3282

0.3465 0.0971

0.7690 0.6869

0.5260 0.4041

0.2747 0.1563

0.7594 0.7055

0.5130 0.4233

0.2557 0.1701

γ and γ n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9807 0.5149

0.8619 0.1722

0.5681 0.0182

0.9483 0.6253

0.7977 0.3107

0.4721 0.0780

0.9368 0.6541

0.7756 0.3328

0.4498 0.0952

0.05 0.25

0.50

0.75

0.9675 0.5637

0.8309 0.2346

0.5263 0.0393

0.9358 0.6430

0.7764 0.3369

0.4506 0.0973

0.9261 0.6666

0.7619 0.3503

0.4332 0.1063

0.1 0.25

0.50

0.75

0.9585 0.5868

0.8125 0.2648

0.5020 0.0536

0.9283 0.6505

0.7635 0.3478

0.4398 0.1042

0.9198 0.6730

0.7547 0.3592

0.4239 0.1131

Table 3.10: Proportion of runs with future observation greater than the quartiles.

K1 × (1.2) and K2 × (0.8). Case 2.
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min γ and the max γ n = 10 n = 50 n = 100

γ = γ
1

γ = γ1

γ = γ
1

and γ = γ1

9993

1821

1814

10000

12

12

10000

5

5

Table 3.11: Number of the simulation runs with γ = γ1 or γ = γ1 or both out of

10,000 simulation runs with 0.05 level of significance.K1×(1.2) and K2×(0.8). Case

2.

As introduced in Section 2.2, the Eyring model provides an alternative to the

Arrhenius model [60]. It also uses temperature as the accelerating variable [50, 60,

71]. Where using this model with temperatures as stress levels, K0 is the normal

temperature (Kelvin) at stress level 0, Ki is the higher temperature (Kelvin) at

stress level i, and λ > 0 is the parameter of the Eyring link function model. The

Weibull distributions for different stress levels are assumed to have different scale

parameters αi > 0 for level i, but the same shape parameter β. The Eyring link

function for the Weibull scale parameters is

αi = α0 × (K0/Ki)× exp
[
(λ/Ki − λ/K0)

]
(3.5.1)

In Case 3, we investigate the robustness and the performance of our predictive

inference against the necessary assumptions, where the imprecision in the Arrhenius

link function between different stress level provide robustness against the model

assumptions. To conduct this, we simulated the data from the Eyring-Weibull model

[60] with the parameters α0 = 7000, β = 3 and λ = 2000. This case performs a

more likely practical cases, namely where the Arrhenius-Weibull is assumed for the

inference but this is actually not fully in line with the data generating mechanism

[58].

We conducted the simulation with the assumed Arrhenius-Weibull model for the

analysis. In this simulation, the data was generated from the Eyring-Weibull model,

hence we hope that our method will provide a good performance. We applied the

method described in Section 3.3, with 10, 000 simulation runs. To illustrate this,
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we generated data sets as before with n = 10, 50, 100 observations at each stress

level using the Eyring-Weibull model. We used the similar scenario as in the Case A

simulations where the model assumptions were fully correct but with data generated

from the Eyring-Weibull model. Using these generated data, we again applied our

method as described in Section 3.3, with levels of significance 0.01, 0.05, and 0.10

and we checked whether or not the future observation at the normal stress level K0

has exceeded these quartiles in the right proportion.

In comparison with the simulation where the model assumptions are fully correct,

the results in Table 3.10 are similar to those in Table 3.7. Also, we can see the

similarity of these results from Figures 3.5-3.7 and Figures 3.8-3.10 of the quartiles

of NPI lower and upper survival functions for q = 0.25, 0.50, 0.75. These results

show that the proposed approach provides robustness in predictive inference against

the model assumptions in case of this specific model misspecification.

The main findings drawn from the above simulations are: the future observa-

tion at the normal stress level K0 has exceeded the quartiles that we considered in

the right proportions. Using our approach with both the Arrhenius-Weibull model

and the power-Weibull model, achieves suitable predictive inference if the model

assumptions are fully correct and the end resulting intervals [γ, γ] have reasonable

imprecision. However, in the case of model misspecification, the end resulting inter-

vals [γ, γ] have wider imprecision compared to if the model assumptions are correct.

One can similarly investigate other cases of model misspecification. Of course, in

the case of huge misspecification, no method would give meaningful inferences; in

our model it would most likely lead to large imprecision, which would reflect that

there is a problem of model fit. We have seen that when the number of observations

at each stress level is n = 100, the imprecision between the NPI lower and upper

survival functions tends to decrease compared to when the number of observations

at each stress level n = 10.



3.5. Simulation studies 54

K1K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9396 0.4970

0.8238 0.1426

0.5694 0.0205

0.8583 0.6306

0.6762 0.3254

0.4338 0.0938

0.8332 0.6718

0.6426 0.3706

0.3889 0.1251

0.05 0.25

0.50

0.75

0.9068 0.5547

0.7573 0.2230

0.5051 0.0477

0.8355 0.6612

0.6350 0.3700

0.3988 0.1264

0.8162 0.6942

0.6089 0.4007

0.3570 0.1544

0.1 0.25

0.50

0.75

0.8887 0.5822

0.7184 0.2630

0.4692 0.0694

0.8244 0.6763

0.6176 0.3908

0.3785 0.1457

0.8084 0.7035

0.5944 0.4165

0.3418 0.1686

K2K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.8782 0.6038

0.6965 0.2848

0.4571 0.0648

0.8072 0.6911

0.5905 0.4053

0.3486 0.1576

0.7959 0.7116

0.5704 0.4336

0.3140 0.1820

0.05 0.25

0.50

0.75

0.8529 0.6407

0.6497 0.3381

0.4047 0.1020

0.7943 0.7054

0.5673 0.4271

0.3265 0.1775

0.7875 0.7204

0.5540 0.4501

0.2970 0.1971

0.1 0.25

0.50

0.75

0.8379 0.6558

0.6261 0.3618

0.3795 0.1222

0.7871 0.7131

0.5571 0.4393

0.3153 0.1883

0.7822 0.7243

0.5455 0.4578

0.2902 0.2056

γ and γ n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9433 0.4934

0.8281 0.1366

0.5749 0.0153

0.8583 0.6286

0.6777 0.3229

0.4349 0.0916

0.8338 0.6705

0.6435 0.3690

0.3902 0.1238

0.05 0.25

0.50

0.75

0.9133 0.5472

0.7671 0.2116

0.5142 0.0373

0.8376 0.6583

0.6384 0.3650

0.4016 0.1222

0.8176 0.6915

0.6117 0.3975

0.3592 0.1503

0.1 0.25

0.50

0.75

0.8966 0.5723

0.7334 0.2495

0.4800 0.0566

0.8261 0.6727

0.6229 0.3848

0.3831 0.1386

0.8103 0.6999

0.5980 0.4116

0.3445 0.1634

Table 3.12: Proportion of runs with future observation greater than the quartiles,

simulation from Eyring model. Case 3.
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(a) K1 and K0 (0.01)
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(d) K2 and K0 (0.01)
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(e) K2 and K0 (0.05)
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(f) K2 and K0 (0.1)
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(g) Using γ, γ, (0.01)
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(h) Using γ, γ, (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9133

  0.5472

  0.7671

  0.2116

  0.5142

  0.0373

(i) Using γ, γ, (0.1)
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Figure 3.8: Proportion of runs with future observation greater than the quartiles, n = 10.

Case 3
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(a) K1 and K0 (0.01)
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(b) K1 and K0 (0.05)
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(c) K1 and K0 (0.1)
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(d) K2 and K0 (0.01)
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(e) K2 and K0 (0.05)
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(f) K2 and K0 (0.1)
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(g) Using γ, γ, (0.01)
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(h) Using γ, γ, (0.05)
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(i) Using γ, γ, (0.1)
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Figure 3.9: Proportion of runs with future observation greater than the quartiles, n = 50.

Case 3
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(a) K1 and K0 (0.01)
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(f) K2 and K0 (0.1)
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(g) Using γ, γ, (0.01)
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(h) Using γ, γ, (0.05)
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(i) Using γ, γ, (0.1)
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Figure 3.10: Proportion of runs with future observation greater than the quartiles, n =

100. Case 3
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3.6 Inference using the power-law link function

Yin et al. [79], introduced the statistical approach on which our work is based, as

discussed in Section 3.3. They used the power-law link function. In addition to our

use of the likelihood ratio test to determine the imprecision, we also use this model

to illustrate the use of our method without the assumption of equal shape parameter

for the Weibull distribution at all stress levels. In this section we apply our method

with the different scale parameters αi and different shape parameters βi for the

Weibull distributions for the different stress levels i. The power-law link function

for scale parameters αi should be identified to establish a connection between the

different stress levels i. Regarding to this link function model, an observation ti at

the stress level i, subject to stress Ki, can be transformed to stress level 0, with the

transformed to an observation from level i to level 0 represented by the equation

ti→0 = ti
(Ki

K0

)γ
, (3.6.1)

as used by Yin et al. [79] also is introduced briefly in Section 2.2.

Moreover, a transformation link function, generalizing Equation (3.6.1), can also

be derived if we allow different shape parameters βi for each level i, so our method

can be generalized in this way as well. Then we get

ti→0 = α0

[( ti

α0

(
K0

Ki

)γ )βi] 1
β0 . (3.6.2)

The proposed method in Section 3.3 is illustrated by two examples using simu-

lated data, but we use the power-law link function.

Example 3.6.1. In this example we present two cases, similar to Example 3.4. In

Case 1 we simulate data at all levels using a Weibull distribution at each stress level

and the power-law link function we assume for the analysis. In Case 2 we change

these data such that the assumed link function will not provide a good fit anymore

and we investigate the effect on the interval [γ, γ] and on the corresponding lower

and upper predictive survival functions for a future observation at the normal stress

level.
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Case K0 = 50 K1 = 53 K2 = 59 K1 = 53 (×1.2) K2 = 59 (×0.5)

1 384.657 112.266 77.804 134.719 38.902

2 458.334 352.582 99.120 423.098 49.559

3 474.970 357.112 144.012 428.534 72.006

4 745.488 386.581 187.932 463.898 93.966

5 773.865 402.811 188.568 483.373 94.284

6 822.844 495.271 195.895 594.326 97.948

7 996.161 550.243 209.573 660.292 104.787

8 1098.651 552.277 221.141 662.733 110.571

9 1169.866 650.370 243.699 780.444 121.849

10 1406.782 670.863 311.014 805.035 155.507

Table 3.13: Failure times at three voltage levels (first three columns) and changed

failure times (last two columns), Example 3.6.1.

In this example, we assume the voltage levels to be K0 = 50, K1 = 53 and

K2 = 59 kilovolts. We generate ten observations from a Weibull distribution at each

stress level, linked with the power-law link function. The Weibull distribution at K0

has β = 3 and α0 = 1000, and the power-law parameter is set at γ = 10. In this

example we assume βi = β for all levels i, for which we used Equation 3.6.1, so this

model keeps the same shape parameter at each voltage, and the scale parameters

are linked by the power-law relation, which leads to α1 = 558.3948 at K1 and α2 =

191.0645 at K2. There are in total three parameters that need to be estimated, α0,

β, and γ. Ten units were tested at each voltage level, so a total of 30 failure times

are simulated for this example. The failure times are given in Table 3.13.

We use the pairwise likelihood ratio test between the stress levels Ki and K0

to obtain the intervals [γ
i
, γi] of the values γ for which we do not reject the null

hypothesis. The intervals [γ
i
, γi] are given in Table 3.14.

The NPI lower and upper survival functions are based on the original data at

level 0 together with the transformed data using γ and γ, respectively. In Case 1,

we have γ = 3.374 and the γ = 18.179, γ = 5.495 and γ = 16.167, and γ = 6.476

and γ = 15.234 for significance levels 0.01, 0.05, and 0.1, respectively. These values
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Significance level 0.01 0.05 0.1

Stress level γ
i

γi γ
i

γi γ
i

γi

Case 1: K1 K0 3.374 18.179 5.495 16.167 6.476 15.234

K2 K0 6.516 11.703 7.250 10.994 7.590 10.664

Case 2: K1 × (1.2), K0 0.246 15.050 2.366 13.038 3.347 12.105

K2 × (0.5), K0 10.704 15.891 11.437 15.182 11.777 14.852

Table 3.14: [γi, γi] for Example 3.6.1.

are all equal to the corresponding γ
1

and γ1 of the pairwise comparison of K1 and

K0. We used all the above γ and γ values to transform the data to the normal stress

level 0, see Figure 3.11(a). As mentioned in Section 3.3, if the model fits perfectly,

in most cases we will have γ = γ
1

and γ = γ1, which is therefore also illustrated

here. If the model does not fit well, then it is most likely that γ (or γ) is equal to

γ
i

(or γi) from another stress level.

In Case 2, we illustrate our method in case of misspecification, to study whether

or not a simple model will give robustness in case of misspecification. We multiply

the data at level K1 by 1.2 and we multiply the data at level K2 by 0.5. The

simulated data values are given in the last two columns in Table 3.13. We have

γ = 0.246 and γ = 15.891, γ = 2.366 and γ = 15.182, and γ = 3.347 and γ = 14.852

at significance levels 0.01, 0.05, and 0.1, respectively. Now, the γ values are all

equal to the corresponding γ
1
, but the γ values are all equal to the corresponding

γ2. We used all the above γ and γ values to transform the data to the normal

stress level 0, the corresponding lower and upper survival functions are presented

in Figure 3.11(b). In these figures, the lower survival function S is labeled as S

(γ
i
) and the upper survival function S is labeled as S (γi). These figures show that

smaller significance level leads to more imprecision for the NPI lower and upper

survival functions. Note that in Case 2, the observations at level K1 have increased,

leading to smaller γ
1

and γ1 values, and this leads to the lower and upper survival

functions decreasing in comparison to Case 1. Also, the observations at K2 stress

level in Case 2, have decreased, resulting in larger values for γ
2

and γ2, and this

leads to the lower and upper survival functions increasing in comparison to Case 1.
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As mentioned in Section 3.3, in case of poor model fit, the NPI lower and upper

survival functions in Figures 3.11(b), have more imprecision than in Case 1 where

the model fit was perfectly.
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(a) Case 1
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Figure 3.11: The NPI lower and upper survival functions, Example 3.6.1.
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Case K0 = 50 K1 = 53 K2 = 59

1 384.657 81.454 59.190

2 458.334 321.606 81.174

3 474.970 326.571 132.139

4 745.488 359.170 186.989

5 773.865 377.340 187.815

6 822.844 483.530 197.389

7 996.161 548.627 215.555

8 1098.651 551.062 231.203

9 1169.866 670.509 262.431

10 1406.782 695.941 360.729

Table 3.15: Failure times at three voltage levels, Example 3.6.2.

Example 3.6.2. Example 3.6.1 illustrated our methods with the assumption of

equal shape parameter for the Weibull distributions at all stress levels using the

power-law link function. In this example, we also use this model to illustrate the

use of our method but without the assumption of equal shape parameter for the

Weibull distribution at all stress levels using Equation 3.6.2. Note that we use the

same voltage stress levels as in Example 3.6.1. We simulated ten failure times at

each of three stress levels from the Weibull distribution and using different shape

parameters β0, β1, and β2 for stress levels K0, K1 and K2, respectively.

The Weibull distribution at K0 has β0 = 3, at K1 has β1 = 2.5, and at K2 has

β2 = 2.3 and α0 = 1000, and the power-law parameter sets at γ = 10. Ten failure

times are simulated at each voltage level. The failure times are given in Table 3.15.

Using our method, the intervals [γ
i
, γi] are given in Table 3.16, using Equation

3.6.2. This analysis led to parameters estimates of β̂0 = 2.884081, β̂1 = 2.714822,

α̂0 = 937.854795, and γ̂ = 11.006434, resulting from the pairwise levels K1 and K0.

Similarly, this analysis led to parameters estimates of β̂0 = 2.884084, β̂2 = 2.479445,

α̂0 = 937.854418, and γ̂ = 8.872149, resulting from the pairwise levels K2 and K0.

For the significance levels 0.01, 0.05, 0.1, the values of γ are 2.765 corresponding
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Significance level 0.01 0.05 0.1

Stress level γ
i

γi γ
i

γi γ
i

γi

K1 K0 2.765 19.245 5.010 16.997 6.064 15.944

K2 K0 5.845 11.941 6.664 11.104 7.049 11.941

Table 3.16: [γi, γi] for Example 3.6.2.

to parameter estimates β̂0 = 2.182308 and β̂1 = 2.410073, 5.010 corresponding to

β̂0 = 2.361527 and β̂1 = 2.620797, and 6.064 corresponding to β̂0 = 2.461963 and

β̂1 = 2.689885 in this case, and for γ we have, 19.245 corresponding to parameter

estimates β̂0 = 2.802078 and β1 = 1.870777, 16.997 corresponding to β̂0 = 2.891816

and β̂1 = 2.141687, and 15.944 corresponding to β̂0 = 2.928766 and β̂1 = 2.265410,

respectively. Therefore, based on the original data at level 0 together with the

data transformed from the stress levels K1 to K0 and K2 to K0 using γ and the

corresponding to parameter estimates β̂i, the NPI approach provides the NPI lower

survival function. Similarly, but using γ for the transformation, we derived the NPI

upper survival function, see Figure 3.12. These cases are all equal to the γ
1

and γ1 of

the pairwise comparison of K1 and K0. Comparing this example with Example 3.6.1,

we notice that there is slightly more imprecision in the resulting intervals [γ
i
, γi] in

this example when we assumed to have different (βi = 3, 2.5, 2.3) for stress levels

K0, K1 and K2, respectively, than in Example 3.6.1, where we assumed βi = β for

all levels i, which was indeed used for the simulation. Note that, in Example 3.6.1

the data was generated using same shape parameter β = 3, but in this example we

used different shape parameters βi = 3, 2.5, 2.3.

3.7 Simulation studies

To investigate the predictive performance of our new inference method for ALT

data, we conducted simulation studies. We assumed the voltage stress levels to

be K0 = 40, K1 = 50, and K2 = 55 kilovolts. In this analysis, we ran the sim-

ulation 10,000 times with the data simulated from the Weibull distribution and

using the scale parameter α0 = 7000, and the link function parameter γ = 10, us-
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Figure 3.12: The NPI lower and upper survival functions, Example 3.6.2.

ing the assumed power-law link function model between different stress levels, with

n = 10, 30, 50 data at each stress level. We applied similar method described in

Section 3.5, with levels of significance 0.01, 0.05, 0.1, but now using the power-law

link function Equation 3.6.2 between different stress level. In addition, we also sim-

ulated one more observation at the normal stress level 0, which is used to as a future

observation to investigate the predictive performance. For good performance of our

method, we require that the future observation for each run at the normal stress

level exceeds the first, second, and third quartiles of the NPI lower survival functions

just over proportions 0.75, 0.50 and 0.25 of all runs, respectively, and that the future

observation exceeds the first, second, and third quartiles for the NPI upper survival

functions just under proportions 0.75, 0.50 and 0.25.

In Case A, we investigated the predictive performance of our new method for

ALT data where we assume different shape parameters βi for different levels. In

this analysis, we ran the simulation 10,000 times with the data simulated from the

Weibull distribution while using different shape parameters βi = (β0, β1, β2) for stress
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levels K0, K1 and K2, respectively.

To illustrate this, we generated new data set as before with n = 10, 30, 50 ob-

servations at each stress levels using different shape parameters βi = 3, 2.5, 2.3, for

stress levels K0, K1 and K2, respectively, and assumed the power-Weibull model for

the analysis, where the parameters α0, β0, β1, β2, and the γ parameter of the link

function were estimated. This is similar as done in Example 3.6.2 to illustrate our

method in case of perfect model fit.

We applied our inferential method according to the null hypothesis we used.

Then we used these γ and γ values to transform the data to the normal stress level

K0 using Equation 3.6.2. Note that, the shape parameters βi were estimated in the

analysis. There are estimating values for the shape parameters βi = (β0, β1, β2) with

each corresponding γ
i

and γi, respectively, out of 10.000 simulation runs. Table

3.17 presents the results of these simulations with n = 10, 30, 50, with attention

on prediction of the simulated future observation at level K0. Table 3.17 shows

an overall good performance of the proposed method. From these proportions,

which are indeed achieved, we conclude that the proposed approach using the power-

Weibull model provides sufficient predictive inference if the model assumptions are

fully correct.

Now, we investigate robustness in case of model misspecification in the next three

simulation cases. In Case 1, we investigate the predictive performance of our method

for ALT data, where we assumed different shape parameters for the generated data.

Table 3.18 presents the results for this simulation when we generated the data using

different shape parameters β0 = 3, β1 = 2.5, and β2 = 2.3 for stress levels K0, K1

and K2, respectively. However, in the fitted model using the power-Weibull model

we only assumed a single estimated shape parameter β for all levels, hence only the

parameters α0, β, and the γ parameter of the link function were estimated by the

MLE method. There is more imprecision on the quartiles of NPI lower and upper

survival functions for q = 0.25, 0.50, 0.75 in comparison to the Case A where the

shape parameters β0, β1, and β2 corresponding to the stress levels K0, K1 and K2,

respectively, were estimated in the fitted model for the analysis.

All the results in Case 1 provide an insight into whether or not the presented
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method shows a level of robustness against the misspecification case considered.

Note that, in Table 3.18 for n = 50 with 0.1 level of significance, there is one case

for which the future observation for each run at the normal stress level has exceeded

the first quartile (qU0.25) corresponding to the NPI upper survival functions just

over 0.75 resulting from the pairwise levels K2 to K0. It is highlighted by use of

the bold font in Table 3.18. In this case for the pairwise levels K2 to K0 we only

transformed the observations at the stress level K2 to the normal stress level K0

while the observations at the normal stress level K0 were not transformed with β0 =

3. In most cases in this simulation, the estimate of this single β in the fitted model

was less than 2.5, and because the observations at level K0, with β0 = 3, were not

transformed, therefore the β0 for the normal stress level influenced the estimation

which caused the future observation at the normal stress to slightly exceed the first

quartile (qU0.25) of the NPI upper survival functions just over the 0.75. There is a

slight increase in qU0.25, which means that we have too many observations passing

this quartile from the upper 0.75. It seems that the point 0.75 occurred a bit earlier

and it should be related to the effect of estimating only a single β for the stress

levels K2 to K0 in the fitted model while the data were generated using different

βi. As mentioned, this is in line with our expectation, which is mainly due to the

misspecification case we assumed. Note that, the smaller significance level leads to

more imprecision for the NPI lower and upper survival functions.

In Case 2, we investigated the predictive performance of our method for ALT

data where we assumed different shape parameters βi for the generated data. But,

in the fitted model using the power-Weibull model we only assumed a single fixed

shape parameter β = 2 for all levels, hence only the parameters α0 and the γ

parameter of the link function were estimated. Table 3.19 shows the results with

same scenario as in the previous simulation study. In comparison to the previous

case considered where we assumed the shape parameter as a single estimated β in

the fitted model for the analysis, there are more imprecision on the quartiles of NPI

lower and upper survival functions for q = 0.25, 0.50, 0.75. In Case 2 most of [γ, γ]

have more imprecision than in Case 1, so we see again the method works well in the

sense that it leads to more imprecision if it is more misspecified.
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In Case 3, we also look at what happens if we set the shape parameter β =

3 for all levels in Case 2 instead of the shape parameter β = 2. Then there are

few cases for which the future observation for each run at the normal stress level

has exceeded the first quartile (qU0.25) corresponding to the NPI upper survival

functions just over 0.75 of the pairwise level K2 and K0 compared to Case 1, see

Table 3.20. These simulations show that the proposed approach provides robustness

in the predictive inference against the mistake in the model assumptions in case of

these specific model misspecifications.

In summary, all cases in the above simulations show an overall good performance

of the proposed method, with levels of significance 0.01, 0.05 and 0.1, and with sam-

ple sizes n = 10, 30, 50. Note that, in all cases the data was generated using different

shape parameters βi = 3, 2.5, 2.3 at stress levels K0, K1, and K2, respectively, but

in the analysis we used different scenarios as presented. In Cases 1, 2, and 3, from

Tables 3.18-3.20, the imprecision in the resulting intervals [γ, γ] becomes wider than

in Case A. This happened when we made the mistake of only assuming a single

estimated shape parameter β for all levels in Case 1, a single fixed shape parameter

β = 2 for all levels in Case 2, and a single fixed shape parameter β = 3 for all levels

in Case 3. In Case A, however, we assumed different shape parameters βi for each

stress level.
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K1K0 n = 10 n = 30 n = 50

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9077 0.5332

0.7655 0.1940

0.5407 0.0311

0.8525 0.6296

0.6726 0.3154

0.4299 0.0917

0.8326 0.6532

0.6339 0.3618

0.4005 0.1201

0.05 0.25

0.50

0.75

0.8790 0.5892

0.7040 0.2664

0.4751 0.0655

0.8333 0.6600

0.6339 0.3571

0.3881 0.1249

0.8148 0.6784

0.6050 0.3931

0.3703 0.1469

0.1 0.25

0.50

0.75

0.8620 0.6152

0.6733 0.3002

0.4396 0.0870

0.8231 0.6748

0.6139 0.3789

0.3650 0.1421

0.8049 0.6894

0.5880 0.4102

0.3495 0.1620

K2K0 n = 10 n = 30 n = 50

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.8842 0.5826

0.7142 0.2562

0.4876 0.0529

0.8351 0.6572

0.6333 0.3573

0.3902 0.1182

0.8174 0.6787

0.6049 0.3905

0.3687 0.1464

0.05 0.25

0.50

0.75

0.8588 0.6246

0.6648 0.3165

0.4274 0.0878

0.8182 0.6792

0.6055 0.3907

0.3567 0.1468

0.8022 0.6970

0.5822 0.4154

0.3422 0.1679

0.1 0.25

0.50

0.75

0.8452 0.6426

0.6412 0.3471

0.3993 0.1096

0.8079 0.6925

0.5886 0.4083

0.3387 0.1636

0.7933 0.7056

0.5698 0.4281

0.3295 0.1787

γ and γ n = 10 n = 30 n = 50

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9158 0.5171

0.7785 0.1688

0.5570 0.0182

0.8573 0.6207

0.6803 0.3036

0.4406 0.0801

0.8365 0.6477

0.6411 0.3519

0.4079 0.1115

0.05 0.25

0.50

0.75

0.8900 0.5704

0.7227 0.2384

0.4970 0.0435

0.8398 0.6499

0.6464 0.3418

0.4013 0.1116

0.8205 0.6717

0.6147 0.3824

0.3789 0.1377

0.1 0.25

0.50

0.75

0.8757 0.5934

0.6960 0.2748

0.4636 0.0619

0.8306 0.6653

0.6282 0.3619

0.3808 0.1290

0.8106 0.6823

0.5982 0.3977

0.3617 0.1500

Table 3.17: Proportion of runs with future observation greater than the quartiles.

Correct model, Case A.
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K1K0 n = 10 n = 30 n = 50

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9413 0.5657

0.8107 0.1990

0.5547 0.0234

0.8949 0.6756

0.7213 0.3333

0.4469 0.0795

0.8792 0.7025

0.6814 0.3844

0.4155 0.1101

0.05 0.25

0.50

0.75

0.9164 0.6259

0.7474 0.2790

0.4868 0.0560

0.8759 0.7077

0.6812 0.3817

0.4011 0.1143

0.8643 0.7248

0.6492 0.4209

0.3819 0.1404

0.1 0.25

0.50

0.75

0.9017 0.6546

0.7168 0.3187

0.4513 0.0780

0.8664 0.7244

0.6599 0.4054

0.3786 0.1341

0.8563 0.7364

0.6324 0.4395

0.3641 0.1570

K2K0 n = 10 n = 30 n = 50

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9215 0.6203

0.7585 0.2681

0.5014 0.0415

0.8814 0.7070

0.6806 0.3805

0.4057 0.1099

0.8663 0.7293

0.6535 0.4179

0.3842 0.1389

0.05 0.25

0.50

0.75

0.8998 0.6649

0.7077 0.3358

0.4426 0.0786

0.8662 0.7285

0.6489 0.4200

0.3691 0.1413

0.8551 0.7451

0.6270 0.4468

0.3569 0.1631

0.1 0.25

0.50

0.75

0.8892 0.6885

0.6848 0.3691

0.4123 0.1007

0.8588 0.7411

0.6343 0.4395

0.3505 0.1571

0.8474 0.7528

0.6152 0.4627

0.3419 0.1752

γ and γ n = 10 n = 30 n = 50

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9489 0.5519

0.8268 0.1767

0.5732 0.0130

0.8998 0.6638

0.7264 0.3240

0.4592 0.0720

0.8837 0.6979

0.6904 0.3761

0.4249 0.1031

0.05 0.25

0.50

0.75

0.9280 0.6070

0.7712 0.2553

0.5144 0.0366

0.8832 0.6920

0.6878 0.3652

0.4196 0.1058

0.8705 0.7190

0.6608 0.4101

0.3924 0.1304

0.1 0.25

0.50

0.75

0.9156 0.6343

0.7454 0.2936

0.4808 0.0544

0.8758 0.7096

0.6682 0.3890

0.3962 0.1246

0.8627 0.7295

0.6465 0.4273

0.3755 0.1443

Table 3.18: Proportion of runs with future observation greater than the quartiles.

Case 1.
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K1K0 n = 10 n = 30 n = 50

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9377 0.4939

0.8309 0.1399

0.6038 0.0105

0.8776 0.6039

0.7212 0.2784

0.4869 0.0648

0.8580 0.6357

0.6770 0.3343

0.4419 0.0976

0.05 0.25

0.50

0.75

0.9103 0.5489

0.7670 0.2205

0.5352 0.0346

0.8551 0.6403

0.6774 0.3306

0.4335 0.1029

0.8361 0.6638

0.6390 0.3769

0.4041 0.1324

0.1 0.25

0.50

0.75

0.8938 0.5796

0.7296 0.2591

0.4992 0.0563

0.8426 0.6601

0.6529 0.3587

0.4061 0.1224

0.8253 0.6801

0.6199 0.3967

0.3863 0.1511

K2K0 n = 10 n = 30 n = 50

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9077 0.5602

0.7611 0.2270

0.5291 0.0348

0.8549 0.6492

0.6689 0.3384

0.4288 0.1079

0.8351 0.6709

0.6364 0.3810

0.4006 0.1385

0.05 0.25

0.50

0.75

0.8835 0.6046

0.7068 0.2896

0.4746 0.0680

0.8361 0.6734

0.6350 0.3791

0.3893 0.1396

0.8195 0.6938

0.6094 0.4111

0.3714 0.1639

0.1 0.25

0.50

0.75

0.8707 0.6264

0.6825 0.3216

0.4443 0.0888

0.8267 0.6872

0.6174 0.4004

0.3679 0.1576

0.8108 0.7041

0.5944 0.4263

0.3568 0.1753

γ and γ n = 10 n = 30 n = 50

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9405 0.4888

0.8365 0.1321

0.6110 0.0079

0.8802 0.6008

0.7253 0.2740

0.4921 0.0614

0.8597 0.6328

0.6811 0.3303

0.4451 0.0945

0.05 0.25

0.50

0.75

0.9161 0.5408

0.7775 0.2066

0.5501 0.0259

0.8596 0.6353

0.6843 0.3231

0.4433 0.0960

0.8398 0.6608

0.6462 0.3705

0.4101 0.1275

0.1 0.25

0.50

0.75

0.9025 0.5690

0.7453 0.2449

0.5164 0.0430

0.8489 0.6546

0.6619 0.3487

0.4173 0.1156

0.8296 0.6758

0.6286 0.3892

0.3935 0.1434

Table 3.19: Proportion of runs with future observation greater than the quartiles.

Case 2.
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K1K0 n = 10 n = 30 n = 50

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9369 0.5912

0.7938 0.2395

0.5341 0.0321

0.8920 0.6894

0.7123 0.3569

0.4337 0.0953

0.8757 0.7138

0.6747 0.4022

0.4070 0.1237

0.05 0.25

0.50

0.75

0.9158 0.6383

0.7410 0.3011

0.4760 0.0646

0.8735 0.7176

0.6747 0.3991

0.3942 0.1264

0.8624 0.7332

0.6449 0.4334

0.3767 0.1513

0.1 0.25

0.50

0.75

0.9013 0.6627

0.7120 0.3350

0.4407 0.0864

0.8647 0.7305

0.6564 0.4175

0.3733 0.1448

0.8549 0.7425

0.6305 0.4487

0.3587 0.1657

K2K0 n = 10 n = 30 n = 50

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9157 0.6485

0.7412 0.3110

0.4742 0.0632

0.8775 0.7222

0.6708 0.4059

0.3932 0.1309

0.8643 0.7403

0.6456 0.4391

0.3756 0.1543

0.05 0.25

0.50

0.75

0.8969 0.6839

0.6988 0.3623

0.4281 0.0966

0.8635 0.7409

0.6440 0.4378

0.3624 0.1568

0.8537 0.7537

0.6252 0.4616

0.3533 0.1766

0.1 0.25

0.50

0.75

0.8883 0.7020

0.6781 0.3860

0.4024 0.1174

0.8581 0.7507

0.6306 0.4547

0.3461 0.1698

0.8460 0.7606

0.6143 0.4739

0.3391 0.1881

γ and γ n = 10 n = 30 n = 50

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9433 0.5802

0.8102 0.2239

0.5524 0.0220

0.8972 0.6831

0.7213 0.3460

0.4465 0.0865

0.8811 0.7092

0.6831 0.3943

0.4150 0.1172

0.05 0.25

0.50

0.75

0.9254 0.6227

0.7637 0.2811

0.5010 0.0473

0.8819 0.7083

0.6864 0.3852

0.4095 0.1151

0.8682 0.7280

0.6569 0.4222

0.3876 0.1412

0.1 0.25

0.50

0.75

0.9143 0.6463

0.7379 0.3110

0.4689 0.0652

0.8745 0.7209

0.6718 0.4035

0.3900 0.1316

0.8613 0.7366

0.6449 0.4361

0.3717 0.1541

Table 3.20: Proportion of runs with future observation greater than the quartiles.

Case 3.
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3.8 Concluding remarks

This chapter has presented statistical methods for ALT using the Arrhenius-Weibull

model under constant stress testing, using theory of imprecise probability [9, 10],

where the imprecision results from the use of the likelihood ratio test [63]. The

proposed method applies a classical test for comparison of the survival distribu-

tions at different stress levels. The observations at the increased stress levels were

transformed to interval-valued observations at the normal stress level, by developing

imprecision in the link function of the Arrhenius model via the likelihood ratio test

between the pairwise stress levels. Using the Arrhenius model, we linked the data

at different stress levels to the normal stress level, after which NPI can be used at

normal stress level. We found that using an interval of values for the parameter

in the link function between different stress levels enabled us to achieve a greater

level of robustness than if we were to use a single point for the parameter. Using

the proposed approach, the intervals [γ, γ] for the parameter γ for the link function

have adequate imprecision if the model fits well. However, the intervals [γ, γ] for the

parameter γ for the link function get wider if the model fits poorly. The latter can

happen if the model assumptions are not fully correct, for example, using some mis-

specification cases. However, if we have huge imprecision, the remaining inferences

are probably of no use at all. Therefore, it will be a strong recommendation to do

more detailed modelling or sample more data. We also comment on this in Chapter

6. Regarding the choice of the values of the factors for assessing robustness of the

methods, we only show that any suggested form of misspecification can be included

in simulations to then study the level of robustness.

The application of our novel method in this chapter assumed that we have failure

times observed at the normal stress level K0. The assumption of having failure data

at the normal stress level K0 may not be realistic in real world applications. In this

case, we can apply our method to a higher stress level than the normal stress level

K0. The combined data at that level can then be transformed all together to the

normal stress level K0. Investigating this is a topic for future research.

Usually, events of interest in reliability and survival analysis are failure times

[19, 25], such data often includes right-censored observations. The A(n) assumption
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cannot handle right-censored observations, and demands fully observed data. Coolen

and Yan [21] presented a generalization of A(n), called rc-A(n), which is suitable for

NPI with right-censored data, as discussed in Section 2.4. This method can be used

at the second step in our approach if there are right-censored data, and the likelihood

ratio test can just be applied in the first step. So generalizing this method to data

including right-censored observations is straightforward, which will be illustrated in

the next chapter.

We have considered the power-Weibull model to illustrate the use of our method

without the assumption of equal shape parameter for the Weibull distribution at

all stress levels too, and that other lifetime distributions and link functions can be

applied, as long as the transformation of the failure times from higher stress levels to

the normal stress level is monotonously increasing function. The approach presented

in this chapter with the assumption of the Weibull failure time distributions at each

stress level can be deleted and using nonparametric hypothesis tests instead, which

will be illustrated in Chapter 4. In that chapter, we will also explain why we use

pairwise tests instead of one test on all stress levels simultaneously.



Chapter 4

Imprecise inference based on the

log-rank test

4.1 Introduction

In this chapter, we develop a new imprecise statistical method for ALT data related

to the method introduced in Chapter 3. There, we assumed an explicit model at

each stress level, namely the Weibull failure time distribution. In this chapter, we do

not assume a failure time distribution at each stress level, only a specific parametric

link function between the levels.

In this chapter, we assume the Arrhenius model for the analysis of ALT with

failure data under a constant level of stress also used in Section 3.3. If the Arrhenius

model provides a realistic link between the different stress levels, then the observa-

tions transformed from the increased stress levels to the normal stress level should

be indistinguishable. For clarity, according to this model, an observation ti at stress

level i, subject to stress Ki, can be transformed to an observation at the normal

stress level K0, by the equation

ti→0 = ti exp
( γ

K0

− γ

Ki

)
, (4.1.1)

where Ki is the accelerated temperature at level i (Kelvin), K0 is the normal tem-

perature at level 0 (Kelvin), and γ is the parameter of the Arrhenius model.

75
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Note that in this chaper there is no distribution assumed at each stress level,

hence we replace the likelihood ratio test used in Chapter 3, by the log-rank test. In

this chapter, we propose a new log-rank test based method for predictive inference

on a future unit functioning at the normal stress level. Testing the equality of the

survival distribution of two or more independent groups, as we do in this chapter, is

possible by using a nonparametric statistical test. There are several nonparametric

test procedures that can be used to test the equality of the survival distributions;

a popular one is the log-rank test [46, 65]. We use the log-rank test to find the

intervals of values of the parameter γ of the Arrhenius link function for which we

do not reject the null hypothesis that two groups of failure data, possibly including

right-censored observations are, derived from the same underlying distribution. This

can be interpreted such that, for such values of γ, the combined data at stress level

K0 are well mixed. This interval of values of the parameter γ of the Arrhenius

link function is used to transform the data from the increased stress levels to the

normal stress level. Then, the ultimate aim is inference at the normal stress level.

We consider nonparametric predictive inference at the normal stress level combined

with the Arrhenius model linking observations at different stress levels. Note we

also assume that we have failure data at the normal stress level, as discussed in

Chapter 3. Note also that this method follows the same procedure as in Chapter

3, except that we use a different classical hypothesis test because we do not assume

the Weibull failure time distribution at each stress level.

This chapter is organized as follows. Section 4.2 introduces the main idea of im-

precise predictive inference based on ALT and the log-rank test. The main novelty

of the approach in this chapter is that by using a classical nonparametric test, we

do not need to assume a parametric failure time distribution at each stress level.

This should make the method more widely applicable than the method presented

in Chapter 3. In Section 4.3 we explain why we do not use a single log-rank test

on all stress levels. Section 4.4 illustrates our method in seven examples using sim-

ulated data and data from the literature. Section 4.5 presents results of simulation

studies that investigate the performance of the proposed method using the Arrhe-

nius link function. Section 4.6 presents results of simulation studies of robustness
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that investigate the performance of the proposed method when we consider cases of

misspecification. Section 4.7 presents some concluding remarks.

4.2 Predictive Inference Based on Log-Rank Test

In this section we present a new semi-parametric statistical method based on ALT

data. The idea of the method is similar as that of the method introduced in Section

3.3, but we do not assume a parametric failure distribution at each stress level and we

define the interval of values for the parameter γ of the Arrhenius link function based

on the log-rank test, as reviewed in Section 3.3. The proposed new semi-parametric

method consists of two steps. First, the pairwise log-rank test is used between stress

levels Ki and K0, to calculate the intervals [γ
i
, γi] of values γ of the Arrhenius link

function for which we do not reject the null hypothesis that the data transformed

from level i to level 0, and the original data from level 0, are derived from the same

underlying distribution, where i = 1, ...,m. With these m pairs (γ
i
, γi), we define γ

= max {min γ
i
, 0} and γ = max γi.

As the second step of this method, each observation at an increased stress level

is transformed to an interval at level 0. If the model fits relatively well, we expect

most γ
i

to be quite similar, and also most γi to be quite similar. The NPI lower

survival function S is attained when all data observations at increased stress levels

are transformed to the normal stress level using γ, and the NPI upper survival

function S results from the use of γ. However, if the model fits poorly, the γ
i

or the

γi, or both, are likely to differ considerably. Hence, in case of poor model fit, the

resulting interval [γ, γ] tends to be wider than in case of good model fit. The main

novelty of the method in this chapter is that there is no parametric failure time

distribution at each stress level and we also expect more imprecision in the resulting

intervals [γ, γ] of the parameter γ of the Arrhenius link function than in Chapter 3,

if the method in Chapter 3 was applied with correct model.
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4.3 Imprecision based on the pairwise test

Generally, testing the equality of a survival distribution of two or more indepen-

dent groups often requires a nonparametric hypothesis statistical test. In our novel

method discussed in Section 4.2, we use pairwise log-rank tests between stress level

Ki and K0. An alternative would be to use one log-rank test for the data at all stress

levels combined. We now explain why this would not lead to a sensible method of

imprecise statistical inference. If we have combined groups derived from the same

underlying distribution, it is easy to reject the null hypothesis of equality. For ex-

ample, if we assume we have three groups of data: if we do the pairwise comparison

the confidence interval for any pairwise comparison for the data are higher and

we may not be able to reject the null hypothesis. However, if we have a combined

comparison for all the groups, it is unlikely that the test will show you that the prob-

ability distributions are the same, which makes it easier to reject the null hypothesis.

Let us briefly explain why we use the pairwise tests for each increased stress level

and the normal stress level, instead of a single test for all stress levels combined.

Suppose we wish to test the null hypothesis that data from all stress levels, all

transformed to level 0 using parameter value γa, originate from the same underlying

distribution. Let [γ
a
, γa] be the interval of the values γa for which this hypothesis

is not rejected. If the model fits well, we would expect γ
a

to be close to the γ from

Section 4.2 and also γa to be close to γ. If however, the model fits poorly, the interval

[γ
a
, γa] may be very small or even empty. Therefore, this leads to less imprecision if

the model fits poorly, which is opposite to the effect we wish to achieve by including

imprecision. Thus, by performing pairwise testing on levels Ki and K0, and taking

the minimum and the maximum of the γ
i

and γi, respectively, we achieve more

imprecision in the case of worse model fit, as discussed in Section 4.2. It would be

of interest to study any relations between the lower and upper survival functions

corresponding to the [γi, γi] and [γa, γa], this is left as a topic for future research.

For sensible imprecision, we explain why we only use the pairwise tests including

the normal level data K0 and not tests on two higher stress levels. We are obviously

putting trust in the data if we have them available for the real level K0. We choose
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only to perform the pairwise test with level Ki and K0. The level K0 is always

present because we assume that the data are available in the normal stress level K0

and there are other data transformed to it from other levels Ki, so we wish to use

the normal stress level K0 as the true basis for the comparison.

The Examples 4.4.1-4.4.7 in Section 4.4 illustrate the method proposed by Sec-

tion 4.2 as well as the problem if we wish to use the combined approach for all levels

in Examples 4.4.1-4.4.3, as explained in Section 4.3.

4.4 Examples

In this section, we present seven examples in order to investigate the performance of

our method and its robustness. In Example 4.4.1 we simulate data at all levels that

correspond to the model for the link function which we assume for the analysis. In

Example 4.4.2 we change these data such that the assumed link function no longer

provides a good fit. In Example 4.4.3 we illustrate our new predictive inference

method as presented in Section 4.2, using a data set from the literature. Examples

4.4.1, 4.4.2, and 4.4.3 also illustrate the problem that would occur if we would use

the log-rank test on all stress levels combined, as discussed in Section 4.3. Example

4.4.4 briefly illustrates our proposed method in Chapters 3 and our method in this

chapter. In Example 4.4.5 we illustrate our method for a data set including some

right-censored data. Examples 4.4.6 and 4.4.7 apply our method to larger data sets,

to illustrate the effect of the number of available data.

Example 4.4.1. The method proposed in Section 4.2 is illustrated data simulated

at three temperatures. The normal temperature condition is K0 = 283 and the

increased temperatures in the stress levels are K1 = 313 and K2 = 353 Kelvin. Ten

observations were simulated from a fully specified model using the Arrhenius link

function in combination with a Weibull distribution at each temperature. This is the

same model presented in Section 4.1 and used to simulate data in Examples 4.4.6 and

4.4.7. The Arrhenius parameter was set at γ = 5200, and the Weibull distribution

at K0 had shape parameter β = 3 and scale parameter α0 = 7000. This model has

the same shape parameter at each temperature but the scale parameters are linked
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Case K0= 283 K1=313 K2= 353 K1=313 (×1.4) K2= 353 (×0.8)

1 2692.596 241.853 74.557 338.595 59.645

2 3208.336 759.562 94.983 1063.387 75.987

3 3324.788 769.321 138.003 1077.050 110.402

4 5218.419 832.807 180.090 1165.930 144.072

5 5417.057 867.770 180.670 1214.878 144.560

6 5759.910 1066.956 187.721 1493.739 150.176

7 6973.130 1185.382 200.828 1659.535 160.662

8 7690.554 1189.763 211.913 1665.668 169.531

9 8189.063 1401.084 233.529 1961.517 186.823

10 9847.477 1445.231 298.036 2023.323 238.429

Table 4.1: Failure times at three temperature levels (columns 1-3 and) corresponding

failure times with misspecification (columns 4-5), Example 4.4.1.

by the Arrhenius relation, which led to scale parameter 1202.942 at K1 and 183.091

at K2. Failure times are simulated for ten units tested at each temperature (so for

a total of 30 units in the study). The failure times are given in Table 4.1. In this

example, to illustrate our method we assume that there are no right-censored data.

To illustrate our method using these data, we assume the Arrhenius link function

for the data. Note that our method does not assume a parametric distribution at

each stress level. The pairwise log-rank test is used between levels K1 and K0 and

between levels K2 and K0 to derive the intervals [γ
i
, γi] of values γ for which we

do not reject the null hypothesis. The resulting intervals [γ
i
, γi] are given in the

first two rows of Table 4.2, for three test significance levels. Of course, for lower

significance level the [γ
i
, γi] intervals become wider.

We obtain the NPI lower and upper survival functions by defining γ = min γ
i

=

3901.267 and γ = max γi = 6563.545 at significance level 0.01, γ = min γ
i

=

4254.053 and γ = max γi = 6251.168 at significance level 0.05, and γ = min γ
i

=

4486.491 and the γ = max γi = 6017.435 at significance level 0.10. Note that the

NPI lower survival function is based on the original data at level 0 together with
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Significance level 0.01 0.05 0.10

Stress level γ
i

γi γ
i

γi γ
i

γi

K1 K0 3901.267 6563.545 4254.053 6251.168 4486.491 6017.435

K2 K0 4161.086 5555.130 4499.174 5442.667 4638.931 5353.034

Stress level γ
a

γa γ
a

γa γ
a

γa

K2 K1 K0 4156.263 5652.662 4464.828 5478.451 4499.174 5419.662

Table 4.2: [γ
i
, γi] for Example 4.4.1.

the transformed data from the stress levels K1 and K2 to K0 using γ. Similarly, the

NPI upper survival function is based on the original data at level 0 together with

the transformed data from the stress levels K1 and K2 to K0 using γ. In Figure 4.1,

the lower survival function S is labeled as S (γ
i
) and the upper survival function S

is labeled as S (γi). This figure shows that smaller significance levels lead to more

imprecision for the NPI lower and upper survival functions, which directly results

from the fact that the intervals [γ, γ] are nested, becoming larger if the significance

level is decreased. The NPI lower and upper survival functions can be derived using

the these [γ, γ] intervals, as showed in Figure 4.1(a).

As discussed in Section 4.3, the use of a single log-rank test involving the data

from all stress levels simultaneously will not lead to the desired effect that a worse

model fit should lead to more imprecision. This is illustrated by the values in the

final row in Table 4.2, which are derived by such a simultaneous log-rank test for

this example. From this interval we can again obtain the lower and upper survival

functions using NPI; these are presented in Figure 4.1(b). In this example, the

data were simulated precisely with the link function as assumed in our method,

so there is not much difference between the lower and upper survival functions for

the corresponding significance levels in Figures 4.1(a) and 4.1(b). Example 4.4.2

illustrates what happens if the model does not fit well.

Example 4.4.2. To illustrate our method in a case where the assumed Arrhenius

link function does not fit the data well, and also to show what would have happened

if we had used the joint log-rank test in our method instead of the pairwise tests, we

use the same simulated data as in Example 4.4.1, but we change the data from level
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Significance level 0.01 0.05 0.10

Stress level γ
i

γi γ
i

γi γ
i

γi

K1 × 1.4, K0 2907.787 5570.065 3260.574 5257.689 3493.011 5023.956

K2 K0 4161.086 5597.978 4499.174 5442.667 4638.931 5353.034

Stress level γ
a

γa γ
a

γa γ
a

γa

K2 K1 K0 4455.573 5568.468 4638.930 5368.780 4742.958 5257.689

Table 4.3: [γ
i
, γi] for Example 4.4.2, Scenario 1.

K1 in Scenario 1 and from levels K1 and K2 in Scenario 2. In Scenario 1 (indicated

as Ex 4.4.2-1 in Figure 4.1), we multiply the data at level K1 by 1.4. In Scenario 2

(Ex 4.4.2-2 in Figure 4.1), we do the same while we also multiply the data at level

K2 by 0.8. The resulting data values are given in the last two columns in Table 4.1.

This is similar to our Example 3.4.1 in Chapter 3 but in this example, we define the

interval of values of the parameter γ of the Arrhenius link function based on the

nonparametric log-rank test.

For these two scenarios, we have repeated the analysis as described in Example

4.4.1. The resulting intervals of [γ
i
, γi] are given in the first two rows of Tables 4.3

and 4.4. The NPI lower and upper survival functions in Figures 4.1(c) and 4.1(e),

using our method as discussed in Section 4.2, have more imprecision than the NPI

lower and upper survival functions in Figures 4.1(a), as shown in Example 4.4.1 of

this chapter. Note that the lower survival function is identical in both scenarios as

the same γ is used; this is because the increased values at K1 have resulted in smaller

values for γ
1

and γ1 and the γ in our method is equal to the γ
1

in these cases. In

Scenario 2, the observations at level K2 have decreased, leading to larger γ
2

and γ2

values, and this leads to the upper survival functions increasing in comparison to

Scenario 1.
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(a) Using γ, γ (Ex 4.4.1)
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(b) Using γ
a
, γa (Ex 4.4.1)
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(c) Using γ, γ (Ex 4.4.2-1)
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(d) Using γ
a
, γa (Ex 4.4.2-1)
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(e) Using γ, γ (Ex 4.4.2-2)
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(f) Using γ
a
, γa (Ex 4.4.2-2)
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Figure 4.1: The NPI lower and upper survival functions. Examples 4.4.1 and 4.4.2.
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Significance level 0.01 0.05 0.10

Stress level γ
i

γi γ
i

γi γ
i

γi

K1 × 1.4, K0 2907.787 5570.065 3260.574 5257.689 3493.011 5023.956

K2 × 0.8, K0 4479.541 5916.433 4817.629 5761.121 4957.386 5671.488

Stress level γ
a

γa γ
a

γa γ
a

γa

K2 K1 K0 5031.547 5676.311 5220.356 5531.731 ∅

Table 4.4: [γ
i
, γi] for Example 4.4.2, Scenario 2.

If we had used the joint long-rank test instead of the pairwise tests, as discussed

in Section 4.3, then imprecision would have decreased in these two scenarios, as

seen from Figures 4.1(d) and 4.1(f). Note that in Figure 4.1(f) there are no lower

and upper survival functions corresponding to the use of the joint log-rank test for

significance level 0.10, as this leads to an empty interval of γ values, so the interval

from γ
a

to the γa is an empty set, so clearly our method would not work if we had

used this joint test instead of the pairwise tests. As mentioned in Section 4.3, if the

model does not fit well, then we may reject the null hypothesis for the joint test

of the three levels together, see Tables 4.3 and 4.4. Therefore, we have a smaller

range of values for which we do not reject the null hypothesis. However, if the model

fits poorly, as shown in Figures 4.1(d) and 4.1(f), we actually want a larger range

of values of γ, and therefore increased imprecision in the lower and upper survival

functions. Therefore, it is obvious that this is achieved by taking the minimum of

the γ
i

and the maximum of the γi of the pairwise tests, which will have increased

imprecision, hence this is our proposed method as discussed in Section 4.2. This

is illustrated by Figures 4.1(a), 4.1(c) and 4.1(e). Examples 4.4.3 and 4.4.4 will

illustrate our predictive inference method using data sets from the literature.

Example 4.4.3. The methods proposed in Sections 4.2 and 4.3 are illustrated using

the same data set as Example 3.4.3 in Chapter 3, resulting from a temperature-

accelerated life test. The time-to-failure data were collected at the normal tempera-

ture K0 = 393 Kelvin and at two increased temperature stress levels, K1 = 408 and

K2 = 423. Ten units were tested at each temperature, so a total of 30 units were

used in the study. All of the units failed during the experiment. The failure times,
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Significance level 0.01 0.05 0.1

Stress level γ
i

γi γ
i

γi γ
i

γi

K1 K0 −1874.191 5169.809 −1108.280 4403.899 −624.387 3920.005

K2 K0 38.751 3690.236 435.786 3293.202 686.627 3042.360

Stress level γ
a

γa γ
a

γa γ
a

γa

K2 K1 K0 −384.624 3980.852 153.698 3575.289 430.064 3298.923

Table 4.5: [γ
i
, γi] for Example 4.4.3.

in hours, are given in Table 3.5.

To illustrate our method using these data, we assume the Arrhenius link function

for the data. Then we use the pairwise log-rank test separately between Ki and K0 to

find the intervals [γ
i
, γi] of values of γ for which we do not reject the null hypothesis

with regard to the well-mixed data transformation. The resulting intervals [γ
i
, γi]

are given in the first two rows of Table 4.5, for three test significance levels.

According to the [γ
i
, γi] for log-rank test intervals in Table 4.5, we can obtain

the NPI lower and upper survival functions as described in Section 2.4. The lower

and upper survival functions for levels K1 and K0 at level of significance 0.01, 0.05

and 0.10 values are shown in Figure 4.2(a). The latter figure shows that the NPI

lower survival functions have not transformed because of the γ = max {min γ
i
, 0} =

0 at significance levels 0.01, 0.05, 0.10 are always 0 in this case, and for γ1 we have,

5169.809, 44.3.899 and 3920.005, respectively, for the NPI upper survival functions.

The resulting intervals [γ
2
, γ2] of values γ2 are given in the second row in Table 4.5.

From these intervals, the NPI lower and upper survival functions for all levels K2

and K0 with levels of significance 0.01, 0.05 and 0.10 values are shown in Figure

4.2(b).

Also, we illustrate the effect of using a single test of the null hypothesis that all

the transformed data from all stress levels come from the same underlying distribu-

tion as the observations at the normal stress level. The resulting intervals [γ
a
, γa] of

values γa are given in the third row in Table 4.5. From these intervals, the NPI lower

and upper survival functions for all levels K2, K1 and K0 with levels of significance

0.01, 0.05 and 0.10 values are shown in Figure 4.2(c).
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γ Transformed data

γ = 5169.809 3850 4340 4760 5320 5352.439

5740 6033.658 6160 6580 6617.560

α = 0.01 6990.559 7140 7396.097 7880.266 7979.999

7980 8563.902 8642.873 8960 9147.804

9659.681 9926.341 10422.288 11094.145 11184.894

11947.501 12456.584 12964.309 14489.522 16268.937

γ = 4403.899 3850 4340 4760 4982.353 5320

5616.471 5740 6088.136 6160 6160.000

α = 0.05 6580 6862.990 6884.706 7140 7428.235

7527.151 7971.765 7980 8412.698 8515.294

8960 9076.858 9240.000 9741.018 10327.059

10405.179 11290.726 11595.294 12619.047 14168.754

γ = 3920.005 3850 4340 4760 4761.842 5320

5367.894 5579.042 5740 5887.368 6160

α = 0.1 6289.102 6579.999 6580 6897.724 7099.473

7140 7618.947 7709.221 7980 8138.420

8317.844 8831.052 8926.467 8960 9535.090

9869.999 10346.587 11082.104 11563.832 12983.952

Table 4.6: Transformed data for the upper survival functions.

The resulting intervals [γ, γ] of values γ are given in the first row in Table 4.5.

Figure 4.2(d) shows only our new predictive inference method, which only taking

the minimum of the γ
i

and the maximum of the γi of the pairwise tests, to have

more imprecision. In this figure, the lower survival function S is labeled as S (γ
i
)

and the upper survival function S is labeled as S (γi). This figure shows that lower

significance levels leads to more imprecision and nesting for the NPI lower and upper

survival functions.

Table 4.6 shows the comparison for all transformed observations with levels K1

and K0 for the transformed data of the upper survival function. We know that the

transformed data of the lower survival function end at 8960 at significance levels

0.01, 0.05, 0.10 because of the γ = 0, therefore, we only have the data as given in

Table 3.5 in Example 3.4.3. From Table 4.6, the observations transformed with the

0.01 significance level are wider than the transformed observations with the 0.05 and
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0.10 significance levels. Note that, the intervals [γ2, γ2] of the pairwise stress levels

K2 and K0 are within the intervals [γ1, γ1] of the pairwise stress levels K1 and K0.

In this method the intervals occur when two values are identical (up to numerical

rounding), these values are underlined in Table 4.6. For example, the point 6160

appears consecutively in Table 4.6 with significance levels 0.05. When this occurs

or when the difference between the two points is extremely small, we find the in-

terval [γ
i
, γi] of values γ parameter of the link function. One of these points is an

observation from the real level K0 and the other data point is transformed to the

level K0 from the level K1. Consequently, when we have a γ which is at the point

where the p-value changes, you must have one data point from the higher level Ki

which is about equal to one of the data points from the normal level K0.

As mentioned we used the same data set as Example 3.4.3 in Chapter 3, where we

use the assumption of the Weibull distribution at each stress level, so the resulting

intervals [γ, γ] in Table 3.6 shows less imprecision compared to the resulting intervals

[γ, γ] in this example in Table 4.5 where the log-rank test is used.
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(b) K2 and K0
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(c) K2,K1 and K0
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(d) Using γ, γ
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Figure 4.2: The NPI lower and upper survival functions. Example 4.4.3.

Example 4.4.4. In this example, we compare our method presented in this chapter

with the method presented in Chapter 3 when they assumed to have a failure time

distribution at each stress level and use the likelihood ratio test to derive the interval

for the parameter of the link function. Suppose the data correspond to the ALT

under the constant stress level published in [53, 77], which presents the voltage-

accelerated lifespan test. Three voltage test levels were established at K0 = 80, K1 =

100, and K2 = 120. The normal voltage is K0 = 80 and the increased voltage stress

levels are K1 = 100 and K2 = 120 Voltages. At each voltage level, n = 8 failure

times were under analysis, for a total of 24 failure times used in the study. All of

the observations failed during the experiment. The failure times, in hours, are given
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Case K0 = 80 K1 = 100 K2 = 120

1 1770 1090 630

2 2448 1907 848

3 3230 2147 1121

4 3445 2645 1307

5 3538 2903 1321

6 5809 3357 1357

7 6590 4135 1984

8 6744 4381 2331

Table 4.7: Failure time of surface-mounted electrolytic capacitor. Example 4.4.4.

Significance level 0.01 0.05 0.1

Stress level γ
i

γi γ
i

γi γ
i

γi

K1 K0 −0.567 4.329 0.153 3.642 0.480 3.330

K2 K0 1.438 4.192 1.836 3.803 2.018 3.625

Table 4.8: [γi, γi] for the likelihood ratio test. Example 4.4.4

in Table 4.7.

Applying our new method as discussed in Chapter 3 when we assumed a failure

time distribution at each stress level using the data in Table 4.7, we have assumed

the Weibull failure time distributions at each stress level, with the power-law link

function between different stress levels. The power-Weibull model for different stress

levels is assumed to have different scale parameters, αi and same shape parameters

βi = β, for level i = 0, 1, ...,m.

Then, we derive the intervals [γ
i
, γi] of the parameter γ values of the power law

link function based on the pairwise likelihood ratio test for which the null hypothesis

that the two groups of failure data come from the same underlying distribution, is

not rejected [63]. The resulting intervals [γ
i
, γi] are given in Table 4.8, for three test

significance levels.

Furthermore, applying our new method as discussed in Section 4.2 using these

data, first, we assume the pairwise log-rank test used between the stress level Ki

and the normal stress level K0 to obtain the intervals [γ
i
, γi] of the values γ of the
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Significance level 0.01 0.05 0.1

Stress level γ
i

γi γ
i

γi γ
i

γi

K1 K0 −1.077 4.460 −0.699 3.777 0 3.126

K2 K0 1.030 4.057 1.427 3.990 2.139 3.954

Table 4.9: [γi, γi] for log-rank test. Example 4.4.4

power-law link function. The resulting [γ
i
, γi] intervals values of the parameter γ

of the link function we assumed are given in Table 4.9. We have found that the

resulting intervals [γ
i
, γi] in Table 4.9 have more imprecision than in the resulting

intervals [γ
i
, γi] in Table 4.8 where we assumed the Weibull assumption at each

stress level.

In the second step of our method presented in Chapters 3 and 4, we transform the

data using the [γ, γ] values, respectively. The NPI lower and upper survival functions

can be obtained according to the [γi, γi] intervals, as explained in Chapters 3 and

4, see Figures 4.3 and 4.4, respectively.

Note that there is a lot of overlap between the data in Table 4.7 and as mentioned

in Chapters 3 and in this chapter as well, if the model assumed is not too far from

reality, we would expect the widest interval for the parameter γ to come from the

likelihood ratio test and the log-rank test, respectively, applied to levels 1 and 0.

However, if the model is worse then we would expect more often that γ = γ
i

for an

i 6= 1, or γ = γi for an i 6= 1.

Example 4.4.5. In the previous examples, we studied the effect of observed failure

times on our statistical inference method for a future observation. However, there

may be right-censored observations among the data. In this example, we use the

same data set as Example 3.4.3 in Chapter 3 again, as done in Example 4.4.3, but

we assume a few cases of right censoring and study the effect of the censoring in the

original data in Table 3.5 by showing the NPI lower and upper survival functions

for the failure time of the future unit based on the combined information. Then we

compare the original NPI lower and upper survival functions in the Example 4.4.3

with the NPI lower and upper survival functions in this example based on where the

right-censored observations are and the effect of these right-censored observations
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Figure 4.3: NPI lower and upper survival functions. Likelihood ratio test, Example

4.4.4

on the log-rank test. We consider three cases for the right-censoring observations

which are given in Table 4.10.

In Case 1, we assume that the 4 observations with + sign in Table 4.10 are instead

right-censored observations at 4000. In Case 2, we assume that the 5 observations

with ∗ sign in Table 4.10 are instead right-censored observations at 6600. In Case

3, all the right-censored observations of Cases 1 and 2 occur.

Again, we obtain the lower and upper interval of the γ values according to the

null hypotheses with levels of significance 0.01, 0.05, 0.1 using the log-rank test for

all the three cases. All the resulting intervals [γ
i
, γi] of values γ of Cases 1, 2,

and 3 are given in Table 4.11. The NPI lower and upper survival functions using

these intervals [γ
i
, γi] for the γ parameter of the Arrhenius link function, as presented

Figure 4.5. The intervals [γ
i
, γi] for the first, second, and third cases in this figure are
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Figure 4.4: NPI lower and upper survival functions. Log-rank test, Example 4.4.4

[γ, γ] = [0, 5982.068], [γ, γ] = [0, 8258.461], and [γ, γ] = [0, 10677.282] at significance

level 0.01 corresponding to the NPI lower and upper survival functions, respectively.

Note that the NPI lower and upper survival functions, in Figure 4.2, in Example

4.4.3, decrease at observed failure times, because all the units transformed to the

normal level as well as the observations at level 0, were failure times. However,

in Example 4.4.5, Cases 1, 2 and 3, the NPI lower survival functions in Figure 4.5

decrease at observed failure times and also decrease by small amounts at right-

censored observations, while the NPI upper survival functions in Figure 4.5 only

decrease at observed failure times, as introduced in Section 2.4. In these Cases 1, 2

and 3, at level K0, we have right-censored observations and these observations never

get transformed which means that the NPI lower survival functions decrease slightly

due to the censoring, whilst the NPI upper survival functions decrease only at the

observed failure times. Note that the [γ
i
, γi] intervals become wider when we have

more censored observations, see Table 4.11 and Figure 4.5.
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Case K0 = 393 K1 = 408 K2 = 423

1 3850 3300 2750

2 4340+ 3720 3100

3 4760+ 4080+ 3400

4 5320+ 4560 3800

5 5740 4920 4100

6 6160 5280 4400

7 6580 5640 4700

8 7140* 6120 5100

9 7980* 6840* 5700

10 8960* 7680* 6400

Table 4.10: Failure times at three temperature levels, Example 4.4.5.

From Figure 4.5, we can find out that the upper survival function for Case 2

moved over the upper survival functions for Case 1 under certain circumstance.

This can happen if the order of an observed event and a right-censored observation

is different under two different transformations. It is important if a right-censored

observation is before or after a fully observed event time, because the probability

mass that is divided at a right-censoring time among the intervals to the right of it

of course depends on the number of observations to the right of the right-censoring

time. If there are fewer observations to the right of the right-censoring time, the

intervals between them all get a bit more probability mass. So, that means that

in the right tail there will be some probability mass if earlier a right-censoring

had occurred to the right of an observation. More examples are presented in [?]

which apply our method to larger data sets, to illustrate the effect of the number of

available data. Increasing the values of n at each stress level, lead to less imprecision

in the resulting intervals [γ, γ], so fewer values of γ in the null hypothesis are not

rejected, compare to, for example, when we have n = 10 observations at each stress

level. Note further that the NPI part also has less imprecision for the larger values

of n.
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Significance level 0.01 0.05 0.1

Stress level γ
i

γi γ
i

γi γ
i

γi

Case 1: K1 K0 −1119.318 5982.068 −353.408 4948.068 409.614 4636.459

K2 K0 606.301 4332.095 1200.640 3805.070 1222.635 3575.298

Case 2: K1 K0 −3673.884 8185.461 −2357.513 6408.005 −1652.449 5653.132

K2 K0 38.751 5239.500 435.786 4332.095 795.557 3940.782

Case 3: K1 K0 −2357.513 10677.282 −1119.319 7377.025 −414.253 7220.264

K2 K0 686.627 6545.213 1352.626 5287.021 1864.493 4834.417

Table 4.11: [γ
i
, γi] for Example 4.4.5.
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Figure 4.5: The NPI lower and upper survival functions, Case 1 (blue line), Case 2

(green line), and Case 3 (red line). Example 4.4.5.
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Significance level 0.01 0.05 0.10

Stress level γ
i

γi γ
i

γi γ
i

γi

K1 K0 3901.115 6023.391 4174.068 5712.041 4224.630 5695.763

K2 K0 4763.596 5620.123 4870.732 5542.659 4946.343 5479.204

Table 4.12: [γi, γi] for Example 4.4.6.

Example 4.4.6. To apply our method in Section 4.2 and show the effect of a

larger data set, the failure data are again simulated at three temperatures as used

in Example 4.4.1, but we simulate n0 = 10, n1 = 20, and n2 = 50 observations

from a Weibull distribution at levels K0, K1, and K2, respectively, so a total of 80

observations. For the simulation we used again the Weibull distribution at level K0

with shape parameter β = 3 and scale parameter α0 = 7000, and the Arrhenius

parameter γ = 5200. These values lead to α1 = 1202.942 at level K1 and α2 =

183.0914 at level K2. To have some idea about the range of the data for each level

for this example note that the smallest observation at stress level K0 is 2692.596

and the largest observation is 9847.477, the smallest observation at stress level K1

is 241.853 and the largest observation is 1958.147, and the smallest observation at

stress level K2 is 62.709 and the largest observation is 284.655.

The resulting intervals [γ
i
, γi] for three significance levels using the pairwise log-

rank tests are given in Table 4.12. In this example, we have γ = 3901.115 and

γ = 6023.391, γ = 4174.068 and γ = 5712.041, and γ = 4224.630 and γ = 5695.763

at significance levels 0.01, 0.05 and 0.10, respectively. We used the above γ and γ

values to transform the data to the normal stress level 0, the resulting NPI lower

and upper survival functions are presented in Figure 4.6. This figure shows that

smaller significance level leads to more imprecision for the NPI lower and upper

survival functions. In addition, increasing the values of n0, n1, and n2, lead to

less imprecision in Figure 4.6 compare to Figure 4.1(a), when we have n = 10

observations at each stress level.
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Figure 4.6: NPI lower and upper survival functions. Example 4.4.6.

Example 4.4.7. In the previous example, we studied the effect of n0 = 10, n1 = 20,

and n2 = 50 observations at levels K0, K1, and K2, respectively. In this example we

simulate n = 50 observations from a Weibull distribution at all levels K0, K1, and

K2, so total of 150 failure times are simulated. The failure data are again simulated

at three temperatures as used in Example 4.4.1, with the same parameters of the

Arrhenius-Weibull used. The range of the data for each level for this example note

that the smallest observation at stress level K0 is 1407.360 and the the largest

observation is 11394.589, the smallest observation at stress level K1 is 412.0113 and

the the largest observation is 1701.799, and the smallest observation at stress level

K2 is 35.587 and the the largest observation is 298.579.

The resulting intervals [γ
i
, γi] for three significance levels using the pairwise log-

rank tests are given in Table 4.13. Based on the original data at level 0 together with

the data transformed from the stress levels K1 to K0 and K2 to K0 using γ, the NPI

approach provides the NPI lower survival functions. Similarly, but using γ for the

transformation, we derived the NPI upper survival functions. For the significance
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Significance level 0.01 0.05 0.10

Stress level γ
i

γi γ
i

γi γ
i

γi

K1 K0 4691.036 5679.580 4808.502 5584.119 4852.349 5543.948

K2 K0 4893.003 5404.910 4971.533 5332.027 4994.124 5310.658

Table 4.13: [γi, γi] for Example 4.4.7.

levels 0.01, 0.05, 0.1, the values of γ are 4691.036, 4808.502 and 4852.349 in this case,

and for γ we have, 5679.580, 5584.119 and 5543.948, respectively. The corresponding

NPI lower and upper survival functions are presented in Figure 4.7. Comparing the

imprecision in the survival functions in this example as shown in Figure 4.7, with

the imprecision in the survival functions in the Example 4.4.6, it shows that when

we generated n = 50 observation at each stress level, the imprecision is smaller than

with fewer observations in Example 4.4.6.

4.5 Simulation studies

In this section, we present the results of a simulation study to investigate the per-

formance of the imprecise predictive inference method for ALT data proposed in

this chapter. For the simulation of data, we applied the same method as described

in Section 3.5. However, for the analysis we do not assume a failure time distri-

bution at each stress level, only a specific parametric link function between the

levels, and we derive the interval of values of the parameter of this link function

using log-rank tests. In Case A, we assumed the temperature stress levels to be

K0 = 283, K1 = 313, and K2 = 353 Kelvin. We then generated random samples

from the Arrhenius-Weibull model with the scale parameter α = 7000, shape pa-

rameter β = 3, and the Arrhenius link function parameter γ = 5200. Then we used

the pairwise log-rank test with the simulated data sets separately between K1 and

K0 and between K2 and K0 to derive the intervals [γ
i
, γi] of γ values, as described

in Section 4.2, where we have chosen different values of α = 0.01, 0.05, 0.1 for the

level of significance.
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Figure 4.7: NPI lower and upper survival functions. Example 4.4.7.

As was done in Section 3.5, a future observation was simulated at stress level K0

and this was used to investigate the predictive performance of our method. For each

simulation, we ran the simulation 10,000 times with n = 10, 50, 100 observations

at each stress level. We examined the performance at the quartiles of NPI lower

and upper survival functions, checking whether or not the future observation at

the normal stress level has exceeded these quartiles in the right proportion of all

simulation runs. For our method to perform well, the future observation for each

run at the normal stress level should exceed the first, second, and third quartiles

of the NPI lower survival functions in a fraction just over 0.75, 0.50 and 0.25 of the

runs and in a fraction just under these values for the NPI upper survival functions.

Tables 4.14 and Figures 4.8-4.10 present the results of the performance of our

method when the Arrhenius model is the assumed model for the generated data and

for the analysis, so the model assumed for the analysis is the same as used for the data

simulation. All of these figures show that the proposed method performs well overall.

Note that the first, second, and third quartiles in these figures are denoted by qL0.25
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and qU0.25, qL0.50 and qU0.50, and qL0.75 and qU0.75 corresponding to the NPI

lower and upper survival functions, respectively. We note that for corresponding

proportions with larger values of n, the differences between the lower and upper

survival functions tend to decrease. This means that when based on more data,

the NPI lower and upper survival functions allow less imprecise inference. However,

when n = 100 there remains quite a bit of imprecision at 0.1 significance level.

This is due to the effect caused by performing the nonparametric test statistics, and

therefore, we still see quite a bit of imprecision here even with a larger data set. The

intervals [γ2, γ2] of the pairwise stress levels K2 to K0 always seems to be within

the the intervals [γ1, γ1] of the pairwise stress levels K1 to K0 once. So the K1 to

K0 simply has more imprecision, as described in Example 4.4.3. Taking the [γ, γ]

of the pairwise stress levels K1 to K0 or K2 to K0 with 0.01, 0.05, 0.10 significance

level will have more imprecision, see Figures 4.8-4.10 (g, h, i).

In Case B, we used a similar simulation scenario, with n = 10, 50, 100 obser-

vations at each stress level, however, we generate the data from the power-Weibull

model and for the analysis, as introduced in Section 3.6 using Equation 3.6.1, so the

model assumed for the analysis is the same as used for the data simulation with α0

= 1500, shape parameter β = 3, and the power-law link function parameter γ = 10.

We assume three different stress levels K0 = 50, K1 = 80, and K2 = 120 kilovolts.

The power-Weibull model for different stress levels are assumed to have different

scale parameters, αi and same shape parameters βi = β, for level i = 0, 1, ...,m.

For this simulation, we have repeated the same analysis as just described in Case

A simulation. The results are presented in Table 4.15. Again, the results for this

simulation study support the same conclusion as those just described, with attention

on the prediction of one future observation at the normal stress level K0 and how

well it mixes with actual data at the normal stress level.

The use of pairwise tests is discussed in Section 3.3, where we assumed a Weibull

distribution at each stress level and use the parametric likelihood ratio test instead

of the log-rank test. The argument for the use of the pairwise test is the same: if

the model fits poorly, a single test on all stress levels would result in less impreci-

sion while our proposed method, combining pairwise tests tends to result in more
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imprecision. For comparison, using the same simulated data set from the Arrhenius-

Weibull model in Case A, we now assume the Weibull distribution at each stress

level and the likelihood ratio test is used between the stress levels Ki and K0 in

the analysis of Case C, to get the intervals [γ
i
, γi] of values γ for which we do not

reject the null hypothesis that the data transformed from level i to level 0, and the

original data from level 0, is derived from the same underlying distribution, where

i = 1, 2. The results for this simulation are presented in Table 4.16. We can see

from these results, in Table 4.14 where we did not assume a Wibull distribution at

each stress level and use the log-rank test, there appears be more imprecision where

we use a small sample size n = 10 than in Table 4.16 where we did assume the

Weibull distribution at each stress level and use the likelihood ratio test. However,

with n = 50 and n = 100 the imprecision is quite similar in both simulations.

Throughout these simulations in this section, the proposed predictive inference

method provides insight into whether or not the presented method shows predictive

inference if the model assumptions are fully correct. All of these simulations show

that the proposed method performs well. Using imprecision around the link function

provides more robustness against the model assumptions. We have found that using

[γ, γ] from the pairwise stress levels Ki and K0 provides adequate imprecision for the

link function parameter if the model assumptions are correct. In the next section,

we will apply the proposed method to investigate robustness in the case of model

misspecification.
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K1K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9469 0.4907

0.8386 0.1328

0.5870 0.0168

0.8553 0.6264

0.6736 0.3218

0.4326 0.0888

0.8300 0.6708

0.6346 0.3687

0.3822 0.1253

0.05 0.25

0.50

0.75

0.9139 0.5451

0.7680 0.2068

0.5231 0.0402

0.8343 0.6567

0.6331 0.3635

0.3975 0.1222

0.8144 0.6938

0.6029 0.4014

0.3497 0.1545

0.1 0.25

0.50

0.75

0.8957 0.5765

0.7303 0.2488

0.4845 0.0619

0.8214 0.6722

0.6147 0.3858

0.3763 0.1415

0.8049 0.7029

0.5879 0.4163

0.3352 0.1677

K2K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.8956 0.5960

0.7122 0.2740

0.4782 0.0580

0.8049 0.6917

0.5932 0.4073

0.3521 0.1599

0.7965 0.7140

0.5703 0.4375

0.3159 0.1856

0.05 0.25

0.50

0.75

0.8593 0.6336

0.6609 0.3294

0.4220 0.0960

0.7949 0.7076

0.5701 0.4280

0.3299 0.1774

0.7869 0.7224

0.5556 0.4522

0.3004 0.2005

0.1 0.25

0.50

0.75

0.8450 0.6517

0.6357 0.3545

0.3943 0.1165

0.7880 0.7149

0.5588 0.4409

0.3197 0.1879

0.7830 0.7273

0.5469 0.4616

0.2922 0.2090

γ and γ n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9498 0.4857

0.8415 0.1237

0.5917 0.0113

0.8565 0.6251

0.6756 0.3192

0.4344 0.0869

0.8302 0.6696

0.6358 0.3673

0.3840 0.1244

0.05 0.25

0.50

0.75

0.9197 0.5360

0.7777 0.1939

0.5323 0.0306

0.8363 0.6539

0.6374 0.3596

0.4006 0.1189

0.8156 0.6919

0.6058 0.3988

0.3528 0.1511

0.1 0.25

0.50

0.75

0.9036 0.5650

0.7437 0.2327

0.4960 0.0483

0.8239 0.6692

0.6205 0.3811

0.3815 0.1356

0.8075 0.7007

0.5916 0.4130

0.3387 0.1639

Table 4.14: Proportion of runs with future observation greater than the quartiles,

Case A.
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(a) K1 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9469

  0.4907

  0.8386

  0.1328

  0.587

  0.0168

(b) K1 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9139

  0.5451

  0.768

  0.2068

  0.5231

  0.0402

(c) K1 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8957

  0.5765

  0.7303

  0.2488

  0.4845

  0.0619

(d) K2 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8856

  0.596

  0.7122

  0.274

  0.4782

  0.058

(e) K2 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8593

  0.6336
  0.6609

  0.3294

  0.422

  0.096

(f) K2 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.845

  0.6517   0.6357

  0.3545
  0.3943

  0.1165

(g) Using γ, γ, (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9498

  0.4857

  0.8415

  0.1237

  0.5917

  0.0113

(h) Using γ, γ, (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9197

  0.536

  0.7777

  0.1939

  0.5323

  0.0306

(i) Using γ, γ, (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9036

  0.565

  0.7437

  0.2327

  0.496

  0.0483

Figure 4.8: Proportion of runs with future observation greater than the quartiles,

n = 10. Case A.



4.5. Simulation studies 103

(a) K1 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8553

  0.6264

  0.6736

  0.3218

  0.4326

  0.0888

(b) K1 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8343

  0.6567
  0.6331

  0.3635
  0.3975

  0.1222

(c) K1 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8214

  0.6722

  0.6147

  0.3858   0.3763

  0.1415

(d) K2 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8094

  0.6917

  0.5932

  0.4073

  0.3521

  0.1599

(e) K2 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.7949

  0.7076

  0.5701

  0.428

  0.3299

  0.1774

(f) K2 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.788

  0.7149

  0.5588

  0.4409

  0.3197

  0.1879

(g) Using γ, γ, (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8565

  0.6251

  0.6756

  0.3192

  0.4344

  0.0869

(h) Using γ, γ, (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8363

  0.6539   0.6374

  0.3596
  0.4006

  0.1189

(i) Using γ, γ, (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8239

  0.6692

  0.6205

  0.3811   0.3815

  0.1356

Figure 4.9: Proportion of runs with future observation greater than the quartiles,

n = 50. Case A.
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(a) K1 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.83

  0.6708
  0.6346

  0.3687   0.3822

  0.1253

(b) K1 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8144

  0.6938

  0.6029

  0.4014

  0.3497

  0.1545

(c) K1 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8049

  0.7029

  0.5879

  0.4163

  0.3352

  0.1677

(d) K2 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.7965

  0.714

  0.5703

  0.4375

  0.3159

  0.1856

(e) K2 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.7869

  0.7224

  0.5556

  0.4522

  0.3004

  0.2005

(f) K2 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.783

  0.7273

  0.5469

  0.4616

  0.2922

  0.209

(g) Using γ, γ, (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8302

  0.6696
  0.6358

  0.3673   0.384

  0.1244

(h) Using γ, γ, (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8156

  0.6919

  0.6058

  0.3988
  0.3528

  0.1511

(i) Using γ, γ, (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8075

  0.7007

  0.5916

  0.413

  0.3387

  0.1639

Figure 4.10: Proportion of runs with future observation greater than the quartiles,

n = 100. Case A.
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K1K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9399 0.4807

0.8314 0.1286

0.5872 0.0158

0.8575 0.6223

0.6783 0.3145

0.4389 0.0861

0.8364 0.6636

0.6454 0.3548

0.3946 0.1147

0.05 0.25

0.50

0.75

0.9092 0.5418

0.7617 0.2051

0.5206 0.0416

0.8384 0.6519

0.6389 0.3576

0.4030 0.1197

0.8206 0.6841

0.6152 0.3892

0.3620 0.1428

0.1 0.25

0.50

0.75

0.8926 0.5749

0.7216 0.2508

0.4818 0.0616

0.8259 0.6673

0.6190 0.3795

0.3815 0.1368

0.8112 0.6957

0.5984 0.4063

0.3459 0.1582

K2K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.8913 0.5770

0.7272 0.2493

0.4947 0.0473

0.8258 0.6727

0.6173 0.3809

0.3774 0.1386

0.8121 0.6982

0.5993 0.4054

0.3458 0.1566

0.05 0.25

0.50

0.75

0.8657 0.6194

0.6767 0.3122

0.4386 0.0820

0.8089 0.6904

0.5934 0.4060

0.3536 0.1594

0.8027 0.7065

0.5802 0.4226

0.3260 0.1719

0.1 0.25

0.50

0.75

0.8527 0.6400

0.6495 0.3396

0.4097 0.1062

0.8013 0.6972

0.5805 0.4173

0.3406 0.1711

0.7954 0.6443

0.5666 0.3895

0.3119 0.2324

γ and γ n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9434 0.4745

0.8360 0.1160

0.5930 0.0102

0.8595 0.6203

0.6818 0.3110

0.4409 0.0835

0.8375 0.6622

0.6483 0.3526

0.3971 0.1126

0.05 0.25

0.50

0.75

0.9158 0.5323

0.7744 0.1900

0.5330 0.0298

0.8412 0.6486

0.6450 0.3518

0.4080 0.1142

0.8229 0.6815

0.6195 0.3844

0.3670 0.1382

0.1 0.25

0.50

0.75

0.9016 0.5634

0.7387 0.2322

0.4976 0.0468

0.8304 0.6612

0.6268 0.3713

0.3895 0.1304

0.8149 0.6281

0.6041 0.3621

0.3516 0.2056

Table 4.15: Proportion of runs with future observation greater than the quartiles,

Case B.
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K1K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9387 0.4952

0.8225 0.1406

0.5697 0.0185

0.8563 0.6270

0.6741 0.3185

0.4331 0.0880

0.8307 0.6693

0.6379 0.3654

0.3847 0.1228

0.05 0.25

0.50

0.75

0.9058 0.5542

0.7550 0.2188

0.5046 0.0464

0.8347 0.6570

0.6340 0.3628

0.3964 0.1236

0.8158 0.6921

0.6062 0.3967

0.3529 0.1518

0.1 0.25

0.50

0.75

0.8878 0.5804

0.7157 0.2609

0.4669 0.0666

0.8217 0.6729

0.6149 0.3832

0.3762 0.1393

0.8057 0.7013

0.5898 0.4124

0.3378 0.1656

K2K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.8808 0.6051

0.6983 0.2842

0.4606 0.0643

0.8112 0.6901

0.5960 0.4030

0.3540 0.1555

0.7992 0.7110

0.5760 0.4324

0.3229 0.1794

0.05 0.25

0.50

0.75

0.8552 0.6405

0.6518 0.3386

0.4082 0.1035

0.7964 0.7061

0.5736 0.4250

0.3334 0.1758

0.7897 0.7185

0.5590 0.4471

0.3043 0.1956

0.1 0.25

0.50

0.75

0.8400 0.6566

0.6286 0.3621

0.3831 0.1220

0.7900 0.7133

0.5623 0.4374

0.3198 0.1862

0.7850 0.7231

0.5519 0.4555

0.2957 0.2044

γ and γ n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9424 0.4917

0.8276 0.1349

0.5762 0.0142

0.8576 0.6258

0.6763 0.3163

0.4351 0.0866

0.8315 0.6681

0.6395 0.3645

0.3863 0.1212

0.05 0.25

0.50

0.75

0.9130 0.5470

0.7653 0.2076

0.5150 0.0374

0.8366 0.6553

0.6390 0.3594

0.4011 0.1199

0.8169 0.6894

0.6099 0.3941

0.3566 0.1484

0.1 0.25

0.50

0.75

0.8960 0.5714

0.7313 0.2483

0.4797 0.0543

0.8247 0.6696

0.6212 0.3791

0.3818 0.1343

0.8087 0.6979

0.5944 0.4081

0.3421 0.1618

Table 4.16: Proportion of runs with future observation greater than the quartiles,

Arrhenius-Weibull model, Case C.
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4.6 Simulation study of robustness

In the previous section simulation showed that when we generated the data from the

Arrhenius model and power-law, hence with the analysis from the same models, our

method performs well. In this section we report on a simulation study to investigate

the robustness of the method. As mentioned before, our aim of our new method

is to develop a quite straightforward method of predictive inference based on few

assumptions, where imprecision in the link function between different stress levels

provides robustness against the model assumptions. To illustrate this we have three

cases. In Case 1, we simulated new data sets as before from the Arrhenius-Weibull

model with scale parameter α = 7000, shape parameter β = 3, and Arrhenius

parameter γ = 5200, with the three temperature levels set at K0 = 283, K1 = 313,

and K2 = 353 Kelvin corresponding to the normal stress level K0, and the increased

stress levels K1 and K2, respectively. We ran the simulation 10,000 times, with

different sample sizes n = 10, 50, 100 observations at each stress level. However, in

this simulation study, all the samples at the stress level K1 are multiplied by 1.2.

Using these generated data, so with data multiplied by 1.2 at stress level K1, we

again applied our method as before.

Table 4.17 of Case 1 presents the results of these simulations with n = 10, 50, 100,

hence all the samples at stress level K1 are multiplied by 1.2, with attention to the

prediction of the simulated future observation at level K0. This table shows some

robustness for the imprecision in our method when this misspecification case is

considered. For n = 50, 100 there are a few cases for which the simulated future

observation for each run at the normal stress level has exceeded the first, second,

and third quartiles of the NPI upper survival functions just over 0.75, 0.50 and 0.25,

respectively, see Table 4.17 of the pairwise level K1× 1.2 to K0. Also, the simulated

future observation for each run at the normal stress level has exceeded the NPI

lower survival functions in just under 0.75, 0.50 and 0.25 of the first, second, and

third quartiles, respectively, see Table 4.17 of the pairwise level K2 to K0. Note that

in this simulation, because of the effect of multiplying the data at level K1 by 1.2

which makes the data larger, the lower and upper [γ1, γ1] become smaller compared

to the earlier simulations in Section 4.5 (Case A). Note that the transformation
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in Table 4.17 for the pairwise level K1 × 1.2 to K0 with 0.01, 0.05, 0.1 significance

levels are based on the [γ, γ] = [γ1, γ1] intervals and the transformation in Table 4.17

with 0.01, 0.05, 0.1 significance levels are based on the [γ, γ] = [γ2, γ2] intervals for

pairwise stress levels K2 and K0. However, using our proposed approach in Section

4.2, we take the minimum γi and the maximum γi of the pairwise levels K1 × 1.2

and K0 or K2 and K0 with 0.01, 0.05, 0.1 significance levels and go in the widest case

to achieve more imprecision, where i = 1, 2. As mentioned in Section 4.2, in case

of poor model fit, the resulting interval [γ, γ] in this case tends to be wider than in

Case A in Section 4.5 of good model fit.

Table 4.18 of Case 2 shows the results of a similar simulation as before, however,

all the samples at stress level K1 are multiplied by 0.8. Note that in this simulation,

because of the effect of multiplying the data at level K1 by 0.8 which makes the data

smaller, the lower and upper [γ1, γ1] become larger compared to the earlier simula-

tions in Section 4.5 (Case A). Again, the results for this simulation study support

the same conclusion as those just described in Case 1 in this section, with attention

on the prediction of one future observation at the normal stress level K0 and how

well it mixes with actual data at the normal stress level. From these simulations, we

show that our new proposed method provides some robustness in predictive inference

against the model assumptions in the case of model misspecifcation.



4.6. Simulation study of robustness 109

K1 × (1.2), K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9742 0.5342

0.8663 0.1962

0.5844 0.0409

0.9197 0.7153

0.7669 0.4465

0.4711 0.1872

0.9000 0.7566

0.7404 0.5047

0.4473 0.2408

0.05 0.25

0.50

0.75

0.9562 0.6102

0.8245 0.3008

0.5378 0.0926

0.9018 0.7452

0.7373 0.4905

0.4474 0.2287

0.8864 0.7779

0.7189 0.5389

0.4275 0.2708

0.1 0.25

0.50

0.75

0.9441 0.6460

0.7992 0.3529

0.5121 0.1241

0.8938 0.7594

0.7220 0.5122

0.4367 0.2491

0.8800 0.7895

0.7067 0.5536

0.4176 0.2818

K2K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.8682 0.5452

0.6658 0.2125

0.3973 0.0310

0.7789 0.6458

0.5376 0.3453

0.2791 0.1079

0.7638 0.6754

0.5146 0.3690

0.2513 0.1273

0.05 0.25

0.50

0.75

0.8361 0.5895

0.6119 0.2644

0.3544 0.0596

0.7641 0.6619

0.5145 0.3691

0.2555 0.1271

0.7533 0.6871

0.4988 0.3871

0.2371 0.1399

0.1 0.25

0.50

0.75

0.8187 0.6073

0.5884 0.2922

0.3305 0.0773

0.7572 0.6696

0.5029 0.3805

0.2446 0.1346

0.7472 0.6928

0.4911 0.3965

0.2294 0.1460

γ and γ n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9742 0.4957

0.8663 0.1446

0.5844 0.0145

0.9197 0.6443

0.7669 0.3438

0.4711 0.1058

0.9000 0.6754

0.7404 0.3690

0.4473 0.1273

0.05 0.25

0.50

0.75

0.9563 0.5554

0.8248 0.2219

0.5390 0.0389

0.9018 0.6612

0.7373 0.3687

0.4474 0.1267

0.8864 0.6871

0.7189 0.3871

0.4275 0.1399

0.1 0.25

0.50

0.75

0.9446 0.5802

0.7999 0.2599

0.5129 0.0574

0.8938 0.6691

0.7220 0.3802

0.4367 0.1344

0.8800 0.6928

0.7067 0.3965

0.4176 0.1460

Table 4.17: Proportion of runs with future observation greater than the quartiles, Case

1.
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K1 × (0.8), K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9000 0.4928

0.7544 0.1179

0.5321 0.0070

0.7805 0.5695

0.5346 0.2154

0.2793 0.0151

0.7502 0.6024

0.4880 0.2560

0.2186 0.0382

0.05 0.25

0.50

0.75

0.8571 0.5168

0.6594 0.1560

0.4324 0.0148

0.7550 0.5919

0.4965 0.2522

0.2330 0.0268

0.7345 0.6224

0.4585 0.2682

0.1867 0.0401

0.1 0.25

0.50

0.75

0.8316 0.5367

0.6165 0.1833

0.3782 0.0211

0.7430 0.6050

0.4755 0.2704

0.2085 0.0364

0.7263 0.6322

0.4429 0.2904

0.1717 0.0475

K2K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9087 0.6670

0.7657 0.3566

0.5486 0.0965

0.8504 0.7504

0.6603 0.4882

0.4224 0.2207

0.8343 0.7699

0.6484 0.5201

0.3953 0.2509

0.05 0.25

0.50

0.75

0.8871 0.7015

0.7217 0.4049

0.4971 0.1432

0.8401 0.7619

0.6421 0.5095

0.4007 0.2441

0.8283 0.7782

0.6332 0.5349

0.3789 0.2662

0.1 0.25

0.50

0.75

0.8769 0.7177

0.6991 0.4344

0.4676 0.1693

0.8334 0.7691

0.6316 0.5187

0.3908 0.2565

0.8252 0.7818

0.6253 0.5431

0.3679 0.2745

γ and γ n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9250 0.4927

0.8026 0.1179

0.5832 0.0068

0.8505 0.5695

0.6605 0.2154

0.4227 0.0151

0.8343 0.6024

0.6484 0.2560

0.3953 0.0382

0.05 0.25

0.50

0.75

0.8978 0.5168

0.7419 0.1553

0.5210 0.0145

0.8401 0.5919

0.6422 0.2522

0.4007 0.0268

0.8283 0.6224

0.6332 0.2782

0.3789 0.0401

0.1 0.25

0.50

0.75

0.8850 0.5365

0.7152 0.1826

0.4847 0.0207

0.8334 0.6050

0.6317 0.2704

0.3908 0.0364

0.8252 0.6322

0.6253 0.2904

0.3679 0.0475

Table 4.18: Proportion of runs with future observation greater than the quartiles, Case

2.
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In Case 3, using our new method in Section 4.2, we investigate the robustness and

the performance of our predictive inference against the necessary assumptions, where

the imprecision in the Arrhenius link function between different stress levels provides

robustness against the model assumptions. To perform this, we simulated the data

from the Eyring-Weibull model [60] with the parameters α0 = 7000, β = 3 and λ =

5200 using the Eyring link function for the Weibull scale parameters Equation 3.5.1

introduced in section 3.5.

In this simulation, we used the assumed Arrhenius link function model for the

analysis. We applied the method described in Section 4.2, with levels of significance

0.01, 0.05, and 0.10, with 10, 000 simulation runs. The results presented in Table

4.19 and Figures 4.11-4.13. These reveal that the proposed method performs well

overall, which allows us to conclude that our method shows robustness in predictive

inferences. In comparison with the simulation where the model assumptions are

fully correct in Case A in Section 4.5, the results in Table 4.19 are very similar to

those in Table 4.14, which means that from the preceding investigation, the Eyring

model and the Arrhenius model lead to similar conclusions.
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K1K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9478 0.5056

0.8405 0.1456

0.5901 0.0183

0.8577 0.6282

0.6772 0.3242

0.4342 0.0919

0.8320 0.6740

0.6394 0.3733

0.3859 0.1291

0.05 0.25

0.50

0.75

0.9156 0.5515

0.7714 0.2134

0.5239 0.0429

0.8366 0.6593

0.6376 0.3663

0.4013 0.1268

0.8168 0.6960

0.6065 0.4059

0.3539 0.1577

0.1 0.25

0.50

0.75

0.8971 0.5818

0.7340 0.2532

0.4867 0.0649

0.8246 0.6744

0.6189 0.3892

0.3805 0.1444

0.8069 0.7052

0.5930 0.4209

0.3382 0.1724

K2K0 n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.8840 0.5947

0.7115 0.2715

0.4759 0.0575

0.8079 0.6900

0.5909 0.4053

0.3492 0.1583

0.7953 0.7135

0.5677 0.4348

0.3136 0.1828

0.05 0.25

0.50

0.75

0.8585 0.6323

0.6610 0.3246

0.4200 0.0941

0.7937 0.7054

0.5684 0.4258

0.3272 0.1761

0.7862 0.7215

0.5527 0.4506

0.2983 0.1986

0.1 0.25

0.50

0.75

0.8444 0.6498

0.6337 0.3509

0.3915 0.1150

0.7874 0.7127

0.5569 0.4382

0.3171 0.1858

0.7816 0.7256

0.5445 0.4597

0.2907 0.2071

γ and γ n = 10 n = 50 n = 100

α q qL qU qL qU qL qU

0.01 0.25

0.50

0.75

0.9504 0.5003

0.8429 0.1355

0.5941 0.0125

0.8588 0.6265

0.6788 0.3213

0.4357 0.0896

0.8322 0.6725

0.6402 0.3715

0.3868 0.1277

0.05 0.25

0.50

0.75

0.9214 0.5416

0.7804 0.1993

0.5325 0.0316

0.8384 0.6559

0.6409 0.3622

0.4035 0.1219

0.8179 0.6938

0.6089 0.4017

0.3566 0.1542

0.1 0.25

0.50

0.75

0.9047 0.5692

0.7466 0.2362

0.4968 0.0495

0.8266 0.6704

0.6234 0.3833

0.3846 0.1370

0.8088 0.7023

0.5958 0.4163

0.3412 0.1671

Table 4.19: Proportion of runs with future observation greater than the quartiles,

Case 3.
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(a) K1 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9478

  0.5056

  0.8405

  0.1456

  0.5901

  0.0183

(b) K1 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9165

  0.5515

  0.7714

  0.2134

  0.5239

  0.0429

(c) K1 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8971

  0.5818

  0.734

  0.2532

  0.4867

  0.0649

(d) K2 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.884

  0.5947

  0.7115

  0.2715

  0.4759

  0.0575

(e) K2 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8585

  0.6323
  0.661

  0.3264

  0.42

  0.0941

(f) K2 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8444

  0.6498   0.6337

  0.3509
  0.3915

  0.115

(g) Using γ, γ, (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9504

  0.5003

  0.8429

  0.1355

  0.5941

  0.0125

(h) Using γ, γ, (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9214

  0.5416

  0.7804

  0.1993

  0.5325

  0.0316

(i) Using γ, γ, (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.9047

  0.5692

  0.7466

  0.2362

  0.4968

  0.0495

Figure 4.11: Proportion of runs with future observation greater than the quartiles, n = 10.

Case 3.
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(a) K1 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8577

  0.6282

  0.6772

  0.3242

  0.4342

  0.0919

(b) K1 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8366

  0.6593
  0.6376

  0.3663
  0.4013

  0.1268

(c) K1 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8246

  0.6744

  0.6189

  0.3892   0.3805

  0.1444

(d) K2 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8079

  0.69

  0.5909

  0.4053

  0.3492

  0.1583

(e) K2 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.7937

  0.7054

  0.5684

  0.4258

  0.3272

  0.1761

(f) K2 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.7874

  0.7127

  0.5569

  0.4382

  0.3171

  0.1858

(g) Using γ, γ, (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8588

  0.6265

  0.6788

  0.3213

  0.4357

  0.0896

(h) Using γ, γ, (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8384

  0.6559   0.6409

  0.3622
  0.4035

  0.1219

(i) Using γ, γ, (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8266

  0.6704

  0.6234

  0.3833   0.3846

  0.137

Figure 4.12: Proportion of runs with future observation greater than the quartiles, n = 50.

Case 3.
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(a) K1 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.832

  0.674
  0.6394

  0.3733   0.3859

  0.1291

(b) K1 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8168

  0.696

  0.6065

  0.4059

  0.3539

  0.1577

(c) K1 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8069

  0.7052

  0.593

  0.4209

  0.3382

  0.1724

(d) K2 and K0 (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.7953

  0.7135

  0.5677

  0.4348

  0.3136

  0.1828

(e) K2 and K0 (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.7862

  0.7215

  0.5527

  0.4506

  0.2983

  0.1986

(f) K2 and K0 (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.7816

  0.7256

  0.5445

  0.4597

  0.2907

  0.2071

(g) Using γ, γ, (0.01)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8322

  0.6725
  0.6402

  0.3715   0.3868

  0.1277

(h) Using γ, γ, (0.05)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8179

  0.6938

  0.6089

  0.4017
  0.3566

  0.1542

(i) Using γ, γ, (0.1)

qL0.25 qU0.25 qL0.5 qU0.5 qL0.75 qU0.75

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

  0.8088

  0.7023

  0.5958

  0.4163

  0.3412

  0.1671

Figure 4.13: Proportion of runs with future observation greater than the quartiles, n =

100. Case 3.
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4.7 Conclusions

In this chapter we presented a novel statistical method of imprecise semi-parametric

inference for ALT data. In this chapter, we do not assume a failure time distribution

at each stress level. The proposed method applies the use of the log-rank test

to compare the survival distribution of pairwise stress levels, in combination with

the Arrhenius model to find the interval of γ values. We developed imprecision

through the use of nonparametric tests for the parameter of the link function between

different stress levels, which enabled us to transform the observations at increased

stress levels to interval-valued observations at the normal stress level and achieve

robustness. The main findings drawn from this chapter are: we obtain an interval

for the parameter of the link function, which is assumed at each stress level, by

applying classical hypothesis testing between the pairwise stress levels to determine

the level of imprecision. We showed why, in our method, we use the imprecision from

combined pairwise log-rank tests, and not from a single log-rank test on all stress

levels together. The latter would lead to less imprecision if the model fits poorly,

while our proposed method leads to more imprecision. We have found that the end

resulting [γ
i
, γi] intervals get wider when we have more censored observations.

Throughout this research, we have presented two main contributions. First,

Chapter 3 presented a new imprecise statistical method for ALT data with im-

precision based on the likelihood ratio test to define the interval of values of the

parameter γ of the Arrhenius link function. Secondly, Chapter 4, presented a simi-

lar method, but we defined the interval of values of the parameter γ of the Arrhenius

link function based on the log-rank test. Comparing these two scenarios, the results

in the examples and the simulations show that we have more imprecision when we

apply the nonparametric test than when we apply the likelihood ratio test with the

assumption of a Weibull distribution at each stress level.

As with any novel statistical method developed for real-world applications, the

real value of our method should be shown in practical applications. To implement

the methods, no more is needed on the modelling side than for the classic inference

methods with the same model assumptions, rather the main question is how one can

use the resulting lower and upper survival functions to support real-world decisions.
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Further, we investigate this important aspect in the context of warranty contracts,

which will be discussed in the next chapter.



Chapter 5

Study of warranties with ALT data

5.1 Introduction

In this chapter, we will illustrate a possible application of our new method using both

approaches presented in Chapters 3 and 4. In particular, we focus on warranties and

illustrate how our predictive inference can be used for inference on expected costs

of warranty contracts. This section briefly introduces basic warranties considered in

this chapter.

Products which include a warranty incur added costs to the manufacturer (or the

consumer on occasion) for honouring the terms of the warranty: the warranty cost.

This cost is related to a number of factors; the reliability of the product being the

key factor. Products which fail within the warranty period entail the manufacturer

taking responsibility for honouring the warranty, usually either by refunding or

replacing faulty goods [57]. Generally, a warranty guarantees that a given product

will provide reliable service for a defined period of time [69]. A warranty represents a

contractual relationship between the manufacturer and the consumer that a specific

product will provide reliable service and is absent of material or manufacturing

defects, and, that if such defects cause the product to fail, it will be refunded,

repaired or replaced at the manufacturer’s expense [13, 14]. However, a warranty

is non-binding if the product has been used outside of certain specified conditions

and manufacturers have no obligation to service the product in this case. Further,

a warranty also outlines the limits of the manufacturers’ liability when a product is

118
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not used as intended.

Warranties are of equal importance to both consumers and manufacturers [54].

For example, consumers want to be confident the product they have purchased will

function well. Warranties reassure consumers a product is of suitable quality and un-

likely to develop a fault due to standardization issues, design faults or workmanship.

On the other hand, manufacturers or distributors use warranties to safeguard their

reputation and increase sales [54]. For example, providing a warranty lowers cus-

tomers’ sense of risk in buying a product and encourages trust in the manufacturer’s

products. Warranties can also increase sales by offering guaranteed reliability [54].

Offering a replacement or a refund of the customer’s original purchase price is an

effective way of promoting a brand and increasing consumer demand [54].

Warranties also provide manufacturers with a level of protection against unfair

demands for a refund or replacement by stating their responsibilities [54]. For ex-

ample, while the manufacturer guarantees the consumer will receive a particular

standard of performance from a product, this reduces unreasonable consumer de-

mands that cause a financial loss. Finally, warranties also help manufacturers to

gather consumer information for use in marketing and identify potential quality or

workmanship issues [54].

Accelerated life testing (ALT) plays a key role in the manufacturing industry

in terms of product design and development processes [45]. Indeed, the growth in

competition within design innovation and the drive to slash product development

timescales also underline how important ALT-based approaches are in product de-

sign and development [45]. At present, products are checked under hard conditions

to cause the types of failures that occur in real-life applications [45]. This produces

an amount of data including failure mechanisms, causes, and aspects of probability

distributions of failure times which indicate a product’s reliability in the field under

normal use. These data can also be useful for highlighting further design modi-

fications to enhance reliability [45]. However, determining a product’s reliability

under normal conditions from the ALT data requires extrapolation in the form of a

life-stress relationship [45,60,76], as described in the introduction of Chapter 1 and

Section 2.2.
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ALT is widely used for reliability testing, predicting warranty cost, and assess-

ment, and the comparison of a range of different approaches to solving product

design issues [45]. Here, a well-rounded knowledge of statistical data analysis and

validation techniques are key; indeed, the complexity of statistical models has led to

the recruitment of researchers from a wide range of related fields, and this has be-

come multidisciplinary with computational mathematics, statistics, and engineering

all taking part [45].

A literature on warranties is available with focus on different perspectives. For

example, Blischke and Murthy [14] provide an overview of warranty cost analysis.

Various methods for analyzing and pricing warranty contracts can be found in review

articles [39,55,56,69]. Recently, researchers have been considering pricing warranty

contracts based on ALT data. Yang [78] presented a design for accelerated life

testing plans to predict warranty costs, assuming that the manufacturer offers a free

replacement warranty policy [78]. He developed a test plan to minimize the analysis

of the asymptotic variance of the maximum likelihood estimate of the warranty cost

[78]. Meeker et al. [51] propose a simple use-rate model to predict the failure time

distribution for a future component using accelerated life tests results. Zhao and

Xie [82] use ALT data to predict warranty cost and risk warranty under imperfect

repair. Their goal is to predict the expected warranty cost and provide confidence

intervals for it [82].

Generally, in imprecise probability theory [10], lower and upper expectations of

a real-valued random quantity X, denoted by EX and EX respectively, can be

interpreted in terms of prices as follows. The lower expectation can be regarded as

the maximum buying price for X, meaning that one would be willing to pay any

amount up to EX in order to receive the random amount X. The upper expectation

can be regarded as the minimum selling price for X, meaning that one would be

willing to sell the random amount X for any price greater than EX. Whilst these

interpretations may sometimes be somewhat difficult to link to reality, in our setting

of warranties, one can use them and consider them, for example, as insurance prices.

If a producer takes on a warranty with a random cost X, then they would prefer

to pay a fixed cost up to the lower expectation of X instead of having to pay the
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random X. Similarly, they would certainly prefer to pay out the random amount X

instead of any fixed amount greater than the upper expectation.

Reliability and liability are the most important factors for products. To sell new

products to the consumer, producers must predict the expected warranty cost to

indicate future warranty claims [13, 82]. In this chapter, we consider pricing basic

warranty contracts based on information from ALT data and the use of our novel

imprecise probabilistic statistical method, are described in Chapters 3 and 4. The

new statistical methods we introduced in this thesis include imprecision based on

the likelihood ratio test and log-rank test which provide robustness with regard

to the model assumptions. In this chapter, we derive bounds for expected costs of

warranties based on ALT data and using the NPI lower and upper survival functions

resulting from our new statistical methods.

This chapter is organized as follows. In Section 5.2, we consider a warranty policy

with a fixed penalty cost based on the ALT data and our predictive method, as an

example of how our new methods can be applied to support decisions on warranties,

followed by three examples which illustrate the proposed method. In Section 5.3, we

consider a warranty policy with the penalty cost per unit of time, followed by two

examples which illustrates the proposed method. In Section 5.4, we present some

concluding remarks.

5.2 Policy A: fixed penalty cost

We will explore the use of our new methods presented above for decision making

with regard to warranties. In this section, we consider a simple warranty contract

and consider the expected warranty cost based on information from ALT data and

the use of our novel imprecise predictive probabilistic statistical methods. Our goal

is to predict the lower expected warranty cost EC and the upper expected warranty

cost EC.

Suppose that Tw is the warranty period. Once the period of the warranty Tw

is complete, the warranty on the product expires. The basic contract states that

manufacturer agrees to pay the penalty cost W if the product fails by the warranty
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period Tw. Under this basic policy, the manufacturer agrees to refund a fixed penalty

cost independent of the failure time, if a product fails by time Tw.

The expected value of the cost of this contract, in a single application, is

EC(Tw,W ) = W × (1− S(Tw)).

where S(.) is the item’s survival function. We do not know S(.) but we use our

methods and assumed ALT data to have bounds.

Obviously, EC is monotonously decreasing as a function of S(Tw). Therefore,

the lower expected cost EC is related to the NPI upper survival function S, and

the upper expected cost EC is related to the NPI lower survival function S. So, the

lower expected cost of the payment under the warranty contract is

EC(Tw,W ) = W × (1− SXn+1(Tw)). (5.2.1)

and the upper expected cost of the payment under the warranty contract is

EC(Tw,W ) = W × (1− SXn+1
(Tw)). (5.2.2)

Example 5.2.1. Consider the Example 4.4.4 in Section 4.4 and the warranty policy

A mentioned in this section 5.2: incorporating a fixed penalty failure cost. In this

example we consider two cases. Note that the period of the warranty Tw for all

policies in Case 1 and Case 2 is the same. In Case 1, we use the data from Table

4.7, where n = 10 observations at each stress level, and our lower and upper survival

functions in Figures 4.3 in Example 4.4.4 using the interval [γ, γ] = [0.153, 3.642] at

significance level 0.05. We wish to predict the lower expected cost EC(Tw,W ) and

upper expected cost EC(Tw,W ) to the producer of the warranty if applied to one

future product at normal stress level using Equations 5.2.1 and 5.2.2, respectively.

To do so, in Table 5.1, we give the lower and upper expected costs EC and EC for

a range of different scenarios.

In Case 2, we use the data from Table 4.7 and our lower and upper survival

functions in Figures 4.4 in Example 4.4.4 using the interval [γ, γ] = [0, 3.990] at
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Case Tw W S(Tw) S(Tw) EC(Tw,W ) EC(Tw,W )

1 5000 500 0.5594954 0.1203636 220.2523 439.8182

2 5000 1000 0.5594954 0.1203636 440.5046 879.6364

3 5000 2500 0.5594954 0.1203636 1101.2615 2199.091

Table 5.1: EC(Tw,W ) and EC(Tw,W ). Example 5.2.1, Case 1.

significance level 0.05. Again, we derive the lower expected cost EC(Tw,W ) and

upper expected cost EC(Tw,W ) to the producer of the warranty if applied to one

future product at normal stress level using Equations 5.2.1 and 5.2.2, respectively,

which are given in Tables 5.2.

In Tables 5.1 and 5.2, we present the results of these studies. As mentioned in

Section 5.2, that the lower expected cost EC(Tw,W ) is achieved from multiplying

W which is the price of the product by 1−S(Tw). Similarly, the upper expected cost

EC(Tw,W ) is achieved from multiplying the cost of the product W by 1− S(Tw).

Following the general imprecise probability theory [10] discussion in Section 5.1,

we can give the following interpretation of the lower expected costs EC(Tw,W ) and

upper expected costs EC(Tw,W ) to the producer of a warranty. On the basis of

the data observations and our new statistical method, we have lower and upper

expectations for the expected costs of the policies. So, in terms of the warranty

contract in Table 5.1, for the second policy of Case 1, if a producer takes on a

warranty with random cost C2(Tw,W ), the producer would prefer to pay a fixed

cost up to the lower expectation of 440.5046 instead of having to pay the random

C2(Tw,W ). Similarly, they would certainly prefer to pay out the random amount

C2(5000, 1000) instead of any fixed amount greater than the upper expectation of

879.6364, and similar for policies 1 and 3 in Table 5.1. The results for the warranty

contract (Case 2) in Table 5.2 support the same conclusion as those just described

in Case 1.

If the upper expected cost for policy 1 EC1(Tw,W ) less than the lower expected

cost for policy 2 EC2(Tw,W ) then we strongly prefer policy 1 over policy 2. If

the lower expected cost for policy 1 EC1(Tw,W ) less than the lower expected cost

for policy 2 EC2(Tw,W ) and the upper expected cost for policy 1 EC1(Tw,W ) less
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Policy Tw W S(Tw) S(Tw) EC(Tw,W ) EC(Tw,W )

1 5000 500 0.6403675 0.1201611 179.81625 439.91945

2 5000 1000 0.6403675 0.1201611 359.6325 879.8389

3 5000 2500 0.6403675 0.1201611 899.08125 2199.59725

Table 5.2: EC(Tw,W ) and EC(Tw,W ). Example 5.2.1, Case 2.

Policy Tw W S(Tw) S(Tw) EC(Tw,W ) EC(Tw,W )

1 3000 1000 0.9352566 0.8397405 64.7434 160.2595

2 5000 1500 0.8704304 0.5151495 194.344 727.27575

3 5000 2500 0.8704304 0.5151495 323.924 1212.12625

4 7000 2500 0.5471789 0.1594751 1132.05275 2101.31225

Table 5.3: EC(Tw,W ) and EC(Tw,W ). Example 5.2.2.

than the upper expected cost for policy 2 EC2(Tw,W ) then it make sense to also

prefer (perhaps ‘weakly’) policy 1 over policy 2, although the unknown C1(5000, 500)

could have an expected value greater than C2(5000, 1000). Of course we got a lot of

imprecision between the lower expected costs EC(Tw,W ) and upper expected costs

EC(Tw,W ) because that the number of observations in this example is not that

large. Note that our methods do not give guidance on whether you should select an

amount within the interval [EC(Tw,W ), EC(Tw,W )] compared to the fix costs.

Example 5.2.2. Consider the Example 3.4.1 in Section 3.4 and the warranty policy

A mentioned in this section 5.2 (fixed penalty failure cost). We use the data from

Table 3.1 and our lower and upper survival functions in Figure 3.2(a) in Example

3.4.1 using the interval [γ, γ] = [4593.700, 6100.653] at significance level 0.1. We

derive the lower expected cost EC(Tw,W ) and upper expected cost EC(Tw,W ) to

the producer of the warranty if applied to one future product at normal stress level

using Equations 5.2.1 and 5.2.2, respectively. To do so, in Table 5.3, we give the

lower and upper expected costs EC and EC for a range of different scenarios.

Using the same interpretation of the lower expected costs EC(Tw,W ) and upper

expected costs EC(Tw,W ) to producers of the warranty in Example 5.2.1. There-
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Case Tw W S(Tw) S(Tw) EC(Tw,W ) EC(Tw,W )

1 3000 1000 0.966794 0.8191574 33.206 180.8426

2 5000 1500 0.7709172 0.4262666 343.6242 860.6001

3 5000 2500 0.7709172 0.4262666 572.707 1434.3335

4 7000 2500 0.4188237 0.1236196 1452.94075 2190.951

Table 5.4: EC(Tw,W ) and EC(Tw,W ). Example 5.2.3.

fore, in terms of the warranty contract in Table 5.3, for the first policy, if a producer

takes on a warranty with a random cost C1(Tw,W ), then they would prefer to pay

a fixed cost up to the lower expectation of 64.7434 instead of having to pay the

random C1(Tw,W ). Similarly, they would certainly prefer to pay out the random

amount C1(Tw,W ) instead of any fixed amount greater than the upper expectation

of 160.2595, and similar for policies 2, 3, and 4 in Table 5.3.

Example 5.2.3. Consider the Example 3.4.2 in Section 3.4 and the warranty pol-

icy A mentioned in this section 5.2 (fixed penalty failure cost). We use the data

from Table 3.3, where n = 20 observations at each stress level, and our lower and

upper survival functions in Figure 3.3 in Example 3.4.2 using the interval [γ, γ]

= [4425.681, 5406.786] at significance level 0.1. We derive the lower expected cost

EC(Tw,W ) and upper expected cost EC(Tw,W ) to the producer of the warranty if

applied to one future product at normal stress level using Equations 5.2.1 and 5.2.2,

respectively. To do so, in Table 5.4, we give the lower and upper expected costs EC

and EC for a range of different scenarios.

Using the same interpretation of the lower expected costs EC(Tw,W ) and up-

per expected costs EC(Tw,W ) to producers of the warranty in the Example 5.2.1.

Thus, in terms of the warranty contract in Table 5.4, for the first policy, if a pro-

ducer takes on a warranty with a random cost C1(Tw,W ), then they would prefer to

pay a fixed cost up to the lower expectation of 33.206 instead of having to pay the

random C1(Tw,W ). Similarly, they would certainly prefer to pay out the random

amount C1(Tw,W ) instead of any fixed amount greater than the upper expectation

of 180.8426, and similar for policies 2, 3, 4, and 5 in Table 5.4. Comparing the impre-
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cision in the lower expected costs EC(Tw,W ) and upper expected costs EC(Tw,W )

to producers of the warranty in this example as shown in Table 5.4, with the impre-

cision in the lower expected costs EC(Tw,W ) and upper expected costs EC(Tw,W )

to producers of the warranty in the Example 5.2.1 as shown in Table 5.1, it shows

that when we generated n = 20 observations at each stress level, the imprecision is

smaller than with fewer observations in Example 5.2.1.

5.3 Policy B: time dependent penalty cost

In this section, we consider another warranty contract and again consider the ex-

pected warranty cost based on information from ALT data and the use of our novel

imprecise predictive probabilistic statistical methods. Our goal is to predict the

lower expected warranty cost EC and the upper expected warranty cost EC. In

policy B, we are looking if a product fails at a certain time then the producer will

need to pay a penalty amount (but the penalty is per time unit) until the end of

the policy EC, which is the warranty period Tw.

Generally, where the product fails at time t, and if there would be a distribution,

we would have to take an integral, given by the following equation

EC(Tw, w) =

∫ Tw

0

(Tw − t)wf(t)dt,

where f(t) is the PFD of the product failure times. However, for our case, we

know that the lower and upper survival functions S and S, respectively, which are

related to the upper and lower costs EC and EC, are discrete, which simplifies the

computation as S(.) and S(.) are step functions.

Suppose that Tw is the warranty period. The penalty cost per unit of time

that the product is not working is denoted by w. Therefore, if the penalty failure

cost that needs to be paid if the product fails before a fixed time Tw, then the

penalty cost is equal to w(Tw − t), where t is random. Once the period of the

warranty Tw is complete, the warranty on the product expires. This contract states

that manufacturer agrees to pay the penalty cost w(Tw − t) if the product fails by
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Policy Tw w EC(Tw, w) EC(Tw, w)

1 3000 5 168.260 1463.384

2 5000 2 549.663 2751.085

3 5000 5 1374.160 6878.436

4 7000 2 1365.657 6061.928

5 7000 5 3414.145 15154.822

Table 5.5: EC(Tw, w) and EC(Tw, w). Example 5.3.1.

the warranty period Tw. The lower expected cost EC is related to the NPI upper

survival function S, which is a simple discrete distribution given by

tTw∑
t=t1

PSXn+1
(t)× (Tw − t)× w, (5.3.1)

and the upper expected cost EC is related to the NPI lower survival function S,

which is a simple discrete distribution given by

tTw∑
t=t1

PSXn+1
(t)× (Tw − t)× w. (5.3.2)

Example 5.3.1. Consider the Example 3.4.1 in Section 3.4 and the warranty policy

B (time-dependent penalty failure cost). In this example we use the data from Table

3.1 and our lower and upper survival functions in Figures 3.1 in Example 3.4.1

using the interval [γ, γ] = [4060.018, 6605.752] at significance level 0.01, as used for

Example 5.2.1. We derive the lower expected cost EC(Tw, w) and upper expected

cost EC(Tw, w) to the producer of the warranty if applied to one future product at

normal stress level using Equations 5.3.1 and 5.3.2, respectively. To do so, in Table

5.5, we give the lower and upper expected costs EC(Tw, w) and EC(Tw, w) for a

range of different scenarios. For the period of time [0, 3000], we assume that the

penalty failure cost per unit of time is w = 5, and for the period of time [0, 5000]

and [0, 7000], we assume that the penalty failure costs per unit of time are w = 2

and 5 for both, respectively.
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Again, following the general imprecise probability theory [10] discussion in Sec-

tion 5.1, we can give the following interpretation of the lower expected costsEC(Tw, w)

and upper expected costs EC(Tw, w) to the producers of warranties. On the basis

of the data observations, we have lower and upper expectations for the expected

values. So, in terms of the warranty contract in Table 5.5, for the first policy, if a

producer takes on a warranty with a random cost C1(Tw, w), then they would prefer

to pay a fixed cost up to the lower expectation of 168.260 instead of having to pay

the random C1(Tw, w). Similarly, they would certainly prefer to pay out the random

amount C1(Tw, w) instead of any fixed amount greater than the upper expectation

of 1463.384, and similar for policies 2, 3, 4 and 5 in Table 5.5.

Example 5.3.2. Consider the Example 4.4.7 in Section 4.4 and the warranty policy

B (time-dependent penalty failure cost). In this example we use the same data as in

Example 4.4.7 and our lower and upper survival functions in Figures 4.7 using the

interval [γ, γ] = [4808.502, 5584.119] at significance level 0.05. We derive the lower

expected cost EC(Tw, w) and upper expected cost EC(Tw, w) to the producer of

the warranty if applied to one future product at normal stress level using Equations

5.3.1 and 5.3.2, respectively. To do so, in Table 5.6, we give the lower and upper

expected costs EC(Tw, w) and EC(Tw, w) for a range of different scenarios. For the

periods of time [0, 3000], [0, 4000], [0, 5000] and [0, 7000], we assume that the penalty

failure costs per unit of time are w = 2 and 5 for all, respectively.

On the basis of the data observations, we have lower and upper expectations

for the expected values. So, in terms of the warranty contract in Table 5.6, for the

first policy, if a producer takes on a warranty with a random cost C1(Tw, w), then

they would prefer to pay a fixed cost up to the lower expectation of 76.6025 instead

of having to pay the random C1(Tw, w). Similarly, they would certainly prefer to

pay out the random amount C1(Tw, w) instead of any fixed amount greater than the

upper expectation of 158.2098, and similar for policies 2, 3, 4, 5, 6, 7 and 8 in Table

5.6. Comparing the imprecision in the lower expected costs EC(Tw,W ) and upper

expected costs EC(Tw,W ) to producers of the warranty in this example as shown in

Table 5.6, with the imprecision in the lower expected costs EC(Tw,W ) and upper

expected costs EC(Tw,W ) to producers of the warranty in the Example 5.3.1 as
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Policy Tw w EC(Tw, w) EC(Tw, w)

1 3000 2 76.6025 197.9448

2 3000 5 191.5063 494.8620

3 4000 2 217.0351 500.1913

4 4000 5 542.5878 1250.4784

5 5000 2 550.5390 1191.9109

6 5000 5 1376.3475 2979.7774

7 7000 2 1950.4091 3739.4323

8 7000 5 4876.0228 9348.5809

Table 5.6: EC(Tw, w) and EC(Tw, w). Example 5.3.2.

shown in Table 5.5, we see that when we generated n = 50 observations at each

stress level, the imprecision is smaller than with n = 10 observations at each stress

level.

5.4 Concluding remarks

This chapter has shown a basic application of our new methods to pricing of war-

ranties defined by imprecise probabilities based on ALT data. More specifically, it

uses the NPI lower and upper survival functions at the normal stress level to sup-

port decisions on warranties. This development has been achieved by considering

two steps based on ALT data, namely (i) an ALT model with the link between

different stress levels modelled by a simple parametric link function, e.g. the power

law or the Arrhenius relation, with the application of classical hypothesis tests, e.g.

the likelihood ratio test and the log-rank test to obtain such intervals for the link

function, and (ii) it uses Nonparametric Predictive Inference (NPI) at the normal

stress level, combining data from tests at that level with data from higher stress

levels which have been transformed to the normal stress level.

Based on the results from the ALT data and our novel imprecise predictive prob-

abilistic statistical inference methods, both with and without assuming a Weibull

failure time distribution at each stress level, we derive bounds for expected costs
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of warranties. Other ALT link functions, lifetime distributions, and statistical tests

with different types of data can be used straightforwardly with the presented ap-

proach, while it is also interesting to consider the use of our method for other

decision-support scenarios. For example, different cost structures, modeling failure

and cost for different types of business in warranty contract, safeguarding mainte-

nance on the long term warranty costs.



Chapter 6

Concluding Remarks

The present chapter introduces a brief overview of our key results and outlines a

number of tasks for future research. The main novelty of this thesis is that the

imprecision results are derived based on the classical tests and the idea that, if data

from a higher stress level are transformed to the normal stress level, then these

transformed data and the original data from the normal stress level should not be

distinguishable. This thesis presents a novel method for statistical inference based

on ALT data and imprecise probability. First, we proposed a development for ALT

using the Arrhenius-Weibull model under constant stress testing, using the theory

of imprecise probability, where the imprecision results are derived from a likelihood

ratio test. Secondly, we proposed the development of the use of a novel statistical

method providing imprecise semi-parametric inference for ALT data, where the im-

precision is related to the log-rank test. Both developments apply the use of the

classical tests to compare the survival distribution of pairwise stress levels. In this

thesis, we have considered the use of the imprecise probability, and, in particular, we

have considered the Nonparametric Predictive Inference (NPI) at the normal stress

level combined with the link function between the different stress levels modelled by

a simple parametric link function, e.g. the Arrhenius relation, where we used the

lower and upper intervals for the parameter of the link function. We further present

an initial study of the use of the methods mentioned above to support manufactur-

ers’ decisions on warranties.

131
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Chapter 3 presents a new imprecise statistical inference method for ALT data,

where NPI at normal stress level is integrated with a parametric Arrhenius-Weibull

model. The method includes imprecision based on the likelihood ratio test which

provides robustness with regard to the model assumptions. We applied the use of

the likelihood ratio test to obtain an interval for the parameter of the Arrhenius link

function providing imprecision into the method. The imprecision leads to observa-

tions at increased stress levels being transformed into interval-valued observations at

the normal stress level, where the width of an interval is larger for observations from

higher stress levels. Note that in Chapter 3, at each stress level, we have assumed

the Weibull distribution with the Arrhenius link function between different stress

levels which transform the data from the increased stress levels to the normal stress

level. Examples have been presented in this chapter, namely, a simulated data set

and real data set from the literature. Moreover, the transformation link function

has been derived if we allow different shape parameters βi for each level i. An inves-

tigation of the performance of the proposed method has been illustrated using both

the correct model assumption and the model of misspecification via simulations. In

terms of the latter, our proposed methods achieved a suitable level of robustness

with regard to the model assumptions.

In Chapter 4, the assumption of the Weibull distribution at each stress level we

assumed in Chapter 3, is deleted. In this chapter, we consider an imprecise predic-

tive inference method for ALT. The method is largely nonparametric, with a basic

parametric function to link different stress levels. Based on the log-rank test, we

provide adequate imprecision for the parameter of the assumed link function. Ac-

cording to the null hypothesis, we applied the use of the log-rank test to compare

the survival distribution of pairwise stress levels. Therefore, using the assumed link

function between different stress levels with the use of the log-rank test, we drive

the interval of the parameter of the link function. The observations from the higher

stress levels are then transformed into interval-valued observations at the normal

stress level using this interval to achieve further robustness. We have also shown

why the imprecision from a single log-rank test should not be used on all stress levels

simultaneously. Therefore, the imprecision from the combined pairwise stress levels
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using the minimum of lower value and the maximum of the upper value of the pa-

rameter of the link function provide substantially more imprecision in our proposed

method. Generalizing this method to data including right-censored observations

has been presented. Examples and simulation studies have been illustrated in this

chapter using both the correct model assumption and the model of misspecification.

Based on the results of the latter, our methods provide an overall good performance.

In both the approaches in Chapters 3 and 4, the argument for use of the pairwise

test is the same: if the model fits poorly, a single test on all stress levels would result

in less imprecision while our proposed method, combining pairwise tests tends to

result in more imprecision. The most pessimistic case, which leads to the lower

survival function S, uses γ to transform the data points to the smallest values at

the normal stress level. Unlike the most optimistic case, which uses γ to transform

the data points to the largest values at the normal stress level.

Building imprecision through the use of parametric and nonparametric tests for

the parameter of the link function between different stress levels, which enabled us

to transform the observations at increased stress levels to interval-valued observa-

tions at the normal stress level, achieved further robustness against the necessary

assumptions. Clearly the method used in Chapter 3 is preferable if one has a good

knowledge about the failure times distribution per stress level and Chapter 4 if not.

Chapter 4 typically leads to wider intervals [ γ
i
, γi].

By comparing the use of the pairwise with the assumption of the Weibull dis-

tribution at each stress level and using the nonparametric log-rank test in Chapter

4, we confirm that using the log-rank test proposed in Chapter 4 results in more

imprecision where we have a small sample size than using the assumption of the

Weibull distribution at each stress level and using the parametric likelihood ratio

test instead of the log-rank test. However, with large sample size, e.g. n = 100 the

imprecision is quite similar in both approaches.

Since we began this research, we have not found ALT methods with imprecision in

the literature. The classical methods as presented in the literature seem effectively

to stop at parameter estimations, so no predictions and certainly not predictions

explicitly at the normal stress level are considered while there are more research
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projects of imprecise statistical methods for different reliability issues [19, 25, 70].

The main approach presented in this thesis, that is taking a simple model and

adding imprecision to a parameter, then using corresponding transformed data for

imprecision at the level of interest, has not been presented before for any inference

problem.

In Chapter 5, we consider pricing basic warranty contracts based on information

from ALT data and the use of our novel imprecise probabilistic statistical method,

are described in Chapters 3 and 4. The new statistical methods we introduced in

this thesis include imprecision based on the likelihood ratio test and log-rank test

which provide robustness with regard to the model assumptions. In Chapter 5, we

derive bounds for expected costs of warranties based on ALT data and using the

NPI lower and upper survival functions resulting from our new statistical methods.

Chapter 5 has illustrated the first exploration of our new methods to warranties.

For our novel statistical methods, one can point out how this can be implemented

in real-world scenarios. For instance, we can derive bounds for expected costs of

warranties based on ALT data and using the NPI lower and upper survival functions

resulting from our new statistical methods in Chapters 3 and 4. We have illustrated

some examples involved in inference on warranty and explained how we can calculate

the expected warranty cost for a product.

An interesting future research challenges, including more investigation of further

simulation studies will be of interest. For example, we will consider other distri-

butions instead of the Weibull model as the lifetime distribution, using the theory

of imprecise probability for ALT to extend and develop the use of different ways

of transforming the data from different stress levels. It would be particularly in-

teresting to work on imprecise methods for analysing ALT data into different ALT

scenarios, where we aim to develop a similar approach, e.g. for the case of step-stress

testing. Two such alternative approaches that may be of interest in Chapters 3 and

4 are that the likelihood ratio test and log-rank test in these approaches could be

replaced by other classical tests, where classical statistical tests could be replaced

by imprecise statistical methods to infer whether or not the transformed data and

actual data at the normal stress level are well mixed or even the use of tests based
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on imprecise probability theory could be explored. It would be of interest to con-

sider different statistical approaches and methods to transformed the failure times

from higher stress levels to the normal stress level, as we did, and also, of course,

different cases of misspecification. One can consider to use similar methodology in

a fully parametric ALT (with possible imprecision) as an interesting topic for future

research. It will be interesting to explore if the approach presented in this thesis can

also be applied with degradation models. The modelling of degradation processes

does require much information about the engineering process and physical proper-

ties of the equipment, which may come from detailed measurements of the process

or expert judgements.

The final NPI based inference does not have sufficient assumptions to guide

choice of design. In addition, the assumptions for the model derived [γ, γ] intervals

are not strong enough for design. We do not think people will have studied design

issues if an assumed model turns out to fit the real world data poorly, so design

with the explicit aim of meaningful application of our robust method is a challenge.

In this thesis, to illustrate the main idea of our novel method, we assumed that the

failure data are available at all stress levels including the normal stress level. This

may not be realistic. If there are no failure data at the normal stress level, or only

right-censored observations, then we can apply our method using a higher stress

level as the basis for the combinations, so transform data to that stress level. Then

the combined data at that level could be transformed all together to the normal

stress level. This is a topic for future research.

The aim for this research project as introduced in Chapters 1 and 2, is to use

simple models with imprecision. If the end results are sufficient to answer the

practical questions, then there is no need for more detailed modelling or more data.

If not, then one needs to model in more detail or gather more data (or both). Note

that data are often problematic in real-word contexts. For example, if it involves

testing on prototypes the number of items available is likely to be limited.
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[53] Méndez-González, L.C., Rodŕıguez-Picón, L.A., Valles-Rosales, D.J., Romero-
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