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Abstract

Imprecise probability is a more general probability theory which has many advan-

tages over precise probability theory in uncertainty quantification. Many statistical

methodologies within imprecise probability framework have been developed today,

one of which is nonparametric predicted inference (NPI). NPI has been developed

to handle various data types and has many successful applications in different fields.

This thesis firstly further developed NPI for Bernoulli data to address two current

challenging issues, the computation of imprecise expectation for a general function

of multiple future stages observations and handling of imprecise Bernoulli data. To

achieve the former, we introduce the concept of the mass function from Weichsel-

berger’s axiomatization of imprecise probability theory [39] and Dempster-Shafer’s

notion of basic probability assignment [26, 34]. Based on the concept of mass func-

tion, an algorithm to find the imprecise expectation measure for a general function

of a finite random variable is proposed. We then construct mass functions of single

and multiple future stages observations in NPI for Bernoulli data by its underlying

latent variable representation, which leads to the applicability of the proposed algo-

rithm in NPI for Bernoulli data. To achieve the latter, we extend the original NPI

path counting method in its underlying lattice representation. This leads to the

development of mass function and the imprecise probabilities of NPI for imprecise

Bernoulli data. The property of NPI for imprecise Bernoulli data is illustrated with

a numerical example.
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Subsequently, under the binomial tree model, NPI for Bernoulli data and impre-

cise data are applied to asset and European options trading and NPI for Bernoulli

data is applied to portfolio assessment. The performances of both applications are

evaluated via simulations. The predictive nature and ability of noise recognition

of NPI for precise and imprecise Bernoulli data are validated. The viability for

application of NPI in portfolio assessment is confirmed.
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Chapter 1

Introduction

In this chapter, the background of imprecise probability is briefly recalled within

which the motivations of this thesis are highlighted. Subsequently, the outline of

content is presented which elaborate logical structure of this thesis.

1.1 Motivations

Imprecise probability or sometimes called interval probability is a more general

framework of probability theory. Its development could date back to 1854, by Boole

[6]. From the time, most contributions had been made to the reconciliation between

theories of logic and probability. Later, the notion of imprecise probability has

been advocated by several authors including Peter Walley, Kurt Weichselberger, et

al. [36, 38–40].

But, why do we need imprecise probability, a more general probability theory

which quantifies uncertainty by a set of probability measure instead of one single

probability measure? There are many reasons for this and some of them from the

data perspective are illustrated below.

In the real application, in order to train the model properly, sufficient data must

be gathered. However, to gather enough data is not always possible in practice.

In this situation, precise probability usually falls short of applicability, as a single

probability measure can hardly be deduced accurately due to lack of data. Imprecise

probability, on the other hand, provides a more viable resolution to this situation.

1
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Instead of using one single probability measure, imprecise probability uses a set of

probability measures which allows a degree of imprecision in the inference.

Granted that one can gather enough data to train the model, noises within data

are inevitable. When noise is contained in the data, modelling the uncertainty with a

single probability may not be justified, as the used single probability is likely different

from the true underlying probability. On the other hand, a set probability measure

is more likely to cover the true underlying distribution. Imprecise probability again,

in this case, is a more appropriate theory to be used.

Hence, imprecise probability seems to be a more applicable theory to model

uncertainties in reality as lack of data and noise contained in the data constantly

happen in the real practices.

Nowadays many imprecise probability methodologies have been developed, one

of which is nonparametric predictive inference (NPI) developed by Coolen [8,13,18].

It has been developed to handle different data types and has many successful ap-

plications in the field of engineering reliability. The existing researches have shown

NPI always give consistent results. However, the current development of NPI for

Bernoulli data is facing two unsolved issues—the computation of imprecise expec-

tation for a general function of multiple future stages observations and handling of

imprecise Bernoulli data. Addressing these two issues is then the first motivation of

this thesis. Also, modeling financial uncertainty using imprecise probability appears

to have more advantages than its precise probability [35] and little effort has been

dedicated to the NPI’s application in finance so far. NPI for Bernoulli data may

not be a suitable method to model a sequence of future Bernoulli events which is

not close to identical distributed due to its positive learning from historical data. It

is, however, a suitable method to model a sequence of future Bernoulli events which

are approximately identically distributed but not necessarily independent. When

considering a certain asset over a short period of time on the binomial tree model,

one could assume the market participants over this time period are approximately

homogeneous. Thus the asset price upward or downward movement in each time

stage is approximately identically distributed and is suitable modeled by NPI for

Bernoulli data. Hence, the second motivation of this thesis is to apply NPI for
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Bernoulli data in finance trading.

1.2 Outline of thesis

Chapter 2 presents preliminary material in this thesis which includes the basic frame-

work language used in this thesis, review of NPI, relevant financial concepts and

objects of interest in this thesis. It begins with a introduction of a set of mass func-

tion based imprecise probability definitions. The idea of mass function comes from

Weichselberger’s axiomatization of imprecise probability [39] and Dempster-Shafer’s

notion of basic probability assignment [26,34]. The introduced definitions will serve

as the basic framework language in Chapter 3. Afterward, the imprecise probabil-

ity methodology — Nonparametric predictive inference (NPI) is introduced within

which the current development of NPI for Bernoulli data is reviewed in detail, and

two of its current challenging issues are identified. These are essentially the motiva-

tions of Chapter 3. In the end, with reasonable assumptions, the financial objects

for later NPI application are defined, relevant financial concepts are introduced, and

some financial terminologies are explained which provides necessary information for

one who is less familiar in finance.

The aim in Chapter 3 is to address two challenging issues in NPI for Bernoulli

data identified in Chapter 2. To achieve this, a general algorithm to find imprecise

expectation measures for a general function of a finite random variable in an im-

precise probability space is firstly presented, which provides a tool to address the

first issue. Second, in order to enable the usage of the presented algorithm in NPI

for Bernoulli data, the mass function of NPI is constructed using its latent vari-

able representation. By using a mapping between NPI imprecise probability and

path counting within a lattice, the constructed mass function is shown to produce

the same imprecise probability as presented in Chapter 2. The consistence of the

constructed mass function is also proved. With the presented algorithm and con-

structed mass function, a complete example of how to use the algorithm to construct

imprecise expectation measures for a general function of future observations in NPI

for Bernoulli data is presented. Finally, by extending NPI path counting method in
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its underlying lattice representation, NPI for imprecise Bernoulli data is developed

which addresses the second issue of NPI for Bernoulli data.

In Chapter 4, under the binomial tree model, NPI for Bernoulli data and impre-

cise Bernoulli data are applied in financial asset trading in a prescribed scenario.

Two trading routes with different trading primary objectives are proposed and com-

puter simulation is conducted to evaluate the performance of the trading routes

under the different market conditions and data imprecision. The result shows that

the proposed trading routes for asset are able to execute correct action according to

the situation, has good predictivity and noise recognition.

In Chapter 5, under the binomial tree model, NPI for Bernoulli data and impre-

cise Bernoulli data are applied in financial European call option and European put

option trading in two separate prescribed scenarios. Trading routes with different

trading primary objectives for both call options and put options are proposed. Com-

puter simulation is conducted to evaluate the performance of the proposed trading

routes under different market conditions and data imprecision. The simulation re-

sult confirms that the proposed NPI trading routes have good predictivity, quick

learning property, and moderate noise resistance.

In Chapter 6, under the binomial tree model, NPI for Bernoulli data is applied

in financial portfolio assessment. Computer simulation is conducted to evaluate the

performance of NPI assessment method proposed. The viability for application of

NPI in portfolio assessment is confirmed.

In Chapter 7, a general conclusion of the thesis is drawn. Some of the potential

future extensions of the research presented are suggested.



Chapter 2

Preliminaries

In this chapter, using the concept of the mass function from Weichselberger’s ax-

iomatization of imprecise probability [39] and Dempster-Shafer’s notion of basic

probability assignment [26, 34], a set of mass function based imprecise probabil-

ity definitions is firstly introduced, which serves as a basic framework in Chapter

3. After that, the imprecise probability methodology — Nonparametric predic-

tive inference (NPI) is introduced. Specifically, the current development of NPI for

Bernoulli data is reviewed in detail in which two of its current challenging issues are

identified. Next, with reasonable assumptions, the financial objects for later NPI

application are mathematically defined. Also, relevant financial concepts are intro-

duced. Finally, some financial terminologies are explained which provides necessary

information for one who is less familiar in finance.

2.1 Imprecise probability definitions

In this section, a set of mass function based imprecise probability definitions is

introduced. It is should be noted that throughout this thesis all sample spaces Ω

considered are countable.

Definition 2.1.1 (Precise probability space K )

Given a sample-space Ω, a sigma algebra A of a collection of events in Ω, and a

set function p : A −→ [0, 1], the triple K = [Ω,A , p] is called a precise probability

space if p satisfies Kolmogorov axiom (I–III):

5
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I: p(θ) > 0 ∀θ ∈ A

II: p(Ω) = 1

III: If θi ∈ A for i ∈ N and θi ∩ θj = ∅ for i 6= j, then p(∪i∈Nθi) =
∑

i∈N p(θi)

p is called a precise probability for (Ω; A )

Definition 2.1.2 (A set P of all precise probabilities for [Ω,A ])

Given a measurable space (Ω; A ), we denote all precise probabilities of this space

as P .

P = {p| p satisfies Kolmogorov axiom (I-III) in (Ω,A )}

Definition 2.1.3 (Imprecise probability space I )

Given a sample-space Ω and a sigma algebra A of a collection of events in Ω, a set

function m(·) mapping from elements in A to [0, 1], m(·) : A −→ [0, 1].

The triple I = [Ω,A ,m(·)] is a imprecise probability space I if m(·) satisfies

the following conditions:

I: m(∅) = 0; m(ε) ≥ 0, ∀ε ∈ A

II:
∑
ε∈A

m(ε) = 1

m(·) is called a mass function for [Ω,A ]

Given one imprecise probability space I = [Ω,A ,m(·)] defined as above. The

corresponding upper probability p and lower probability p based on the mass func-

tion m(·) of a event µ ∈ A are defined as:

p(µ) =
∑
ε∈A
ε∩µ6=∅

m(ε) and p(µ) =
∑
ε∈A
ε⊂µ

m(ε)

Conjugacy property of the upper and lower probability

By Definition 2.1.3, for any [Ω,A ,m(·)], there is a conjugacy property between

p(·) and p(·) as follows.

For an event µ ∈ A , let µc denote the complement of µ. µc ∪ µ = Ω, then:

p(µc) + p(µ) = 1

To show this, first, let us prove two propositions.

Proposition 2.1.1

{ε|ε ∈ A , ε ∩ µc 6= ∅} ∩ {ε|ε ∈ A , ε ⊂ µ} = ∅

Proposition 2.1.2

{ε|ε ∈ A , ε ∩ µc 6= ∅} ∪ {ε|ε ∈ A , ε ⊂ µ} = {ε|ε ∈ A } = A
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Proof:

For Proposition 2.1.1. If θ ∈ {ε|ε ∈ A , ε ⊂ µ}, then θ ∩ µc = ∅. Thus θ 6∈ {ε|ε ∈

A , ε ∩ µc 6= ∅}

For Proposition 2.1.2. If θ = {ε|ε ∈ A , ε∩ µc 6= ∅}, then θc = {ε|ε ∈ A , ε∩ µc =

∅} = {ε|ε ∈ A , ε ⊂ µ}

Using Propositions 2.1.1 and 2.1.2, one then has:

∑
ε∈A

m(ε) =
∑
ε∈A

ε∩µc 6=∅

m(ε) +
∑
ε∈A
ε⊂µ

m(ε) ∀µ ∈ A (2.1.1)

1 = p(µc) + p(µ) By Definition 2.1.3 (2.1.2)

Thus one can also have the following:

1. p(∅) =
∑
ε∈A
ε⊂∅

m(ε) = 0

2. p(Ω) = 1− p(∅) = 1 by Equality 2.1.2

3. p(Ω) =
∑
ε∈A
ε⊂Ω

m(ε) = 1

4. p(∅) = 1− p(Ω) = 0 by Equality 2.1.2

Definition 2.1.4 (Atom event)

If an event ε = {Q} ∈ A contains only one element Q in the sample space Ω

(Q ∈ Ω), we call this event an atom event.

Interpretation of the mass function on non atom event

Given [Ω,A ,m(·)], the value that a mass function assigns to a non atom event

could be understood as the shared mass or uncertain mass between the atoms. For

example, for event E = {Q1, Q2, Q3} where Q1, Q2, Q3 ∈ Ω, the mass value m(E)

can be understood as the shared mass between Q1, Q2, Q3. In other words, the mass

value m(E) can be assigned to event Q1 or Q2 or Q3, but it does not necessarily

need to be assigned to Q1 or Q2 or Q3. When one takes the upper probability of

{Q1}, p({Q1}) =
∑
ε∈A

ε∩Q1 6=∅

m(ε), which is an optimistic probability evaluation of Q1,
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the mass value m(E) is included. In contrast, when one takes the lower probability

of {Q1}, p({Q1}) =
∑
ε∈A
ε⊂Q1

m(ε), which is a conservative probability evaluation of Q1,

the mass value m(E) is excluded.

In the case where all mass values for non atom events are zero, the imprecise

probability space [Ω,A ,m(·)] with finite sample space Ω become a precise proba-

bility space [Ω,A , p(·)]. That is, p({Q}) = m({Q}), ∀Q ∈ Ω.

Definition 2.1.5 (Consistence of a sequence of mass functions)

Given an index set I and Ii = [Ω,Ai,mi(·)] a sequence of mass functions mi(·)

defined on different event spaces Ai with respect to same sample space Ω, i ∈ I. The

sequence of mass functions {mi(·)} is said to be consistently defined or consistent

if ∀εj ∈ Aj, ∀εk ∈ Ak, j 6= k, εj ⊂ εk, then p
j
(εj) ≤ p

k
(εk) where p

j
and p

k
is the

lower probability induced by mj(·) and mk(·) respectively.

Definition 2.1.6 (A subset Pm of all precise probabilities P induced by a m(·))

Given a measurable space (Ω; A ), the set P of all precise probabilities on this space

and a mass function m(·) on this space, one can induce a subset Pm of P by the

mass function m(·). Pm is called a credal set or structure in some literature.

Pm = {p(·)|p(·) ∈ P,
∑
ε∈A
ε⊂·

m(ε) ≤ p(·) ≤
∑
ε∈A
ε∩·6=∅

m(ε)}

Thus within [Ω,A , Pm], one has

inf
p(·)∈Pm

p(θ) = p(θ) and sup
p(·)∈Pm

p(θ) = p(θ) ∀θ ∈ A

By using imprecise probability, one now can use a single mass function and

work on the induced probabilities Pm instead of using a single probability in the

application. By doing this, the model can be more robust than its precise probability

counterpart as a set of probabilities is more likely to cover the true underlying

probability of the uncertainties. Also, since gathering perfect information is not

always possible in practice, imprecise model would be a more appropriate model to

reflect the lack of perfect information.

Definition 2.1.7 (Discrete Random variable X)

A discrete random variable is a function X : Ω −→ F where F is a countable ordered
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field and X−1(x) ∈ A ∀ x ∈ F

Definition 2.1.8 (Imprecise expectation of a discrete random variable)

Given an imprecise probability space [Ω,A ,m(·)], a discrete random variable is a

function X : Ω −→ F . We define the lower expectation E and the upper expectation

E of X as:

E(X) = inf
p(·)∈Pm

∑
ω∈Ω

X(ω)p(ω) (2.1.3)

E(X) = sup
p(·)∈Pm

∑
ω∈Ω

X(ω)p(ω) (2.1.4)

Definition 2.1.9 (The lower and upper expectation measure of X)

Given an imprecise probability space [Ω,A ,m(·)], a discrete random variable is a

function X : Ω −→ F , We then define the lower expectation measure p
E(X)

(·) and

and upper expectation measure p
E(X)

(·) as:

p
E(X)

(·) = argmin
p(·)∈Pm

∑
ω∈Ω

X(ω)p(ω) (2.1.5)

p
E(X)

(·) = argmax
p(·)∈Pm

∑
ω∈Ω

X(ω)p(ω) (2.1.6)

To compute the imprecise expectation of a random variable or a function of a

random variable f(X), one needs to find a way construct p
E(X)

(·) and p
E(X)

(·) or

p
E(f(X))

(·) and p
E(f(X))

(·). Based on the above definitions of imprecise probability,

an algorithm for the construction of imprecise expectation measures for a general

function of a finite random variable is presented in Chapter 3.

Definition 2.1.10 (Product space of independent spaces)

A finite sequence of imprecise probability spaces [Ωi,Ai,mi(·)]i=ni=1 are mutually in-

dependent if Ωi ∩ Ωj = ∅ when i 6= j.

[Ω,A ,m(·)] is defined as the product space of n independent imprecise probability

space if Ω = Ω1 × Ω2 × ...× Ωn, A = A1 ×A2 × ...×An, and m(·) =
∏i=n

i=1 mi(·)

Given n finite random variables Xi on different imprecise probability spaces

[Ωi,Ai,mi(·)]i=ni=1 , Xi : Ωi −→ Fi. i ∈ {1, 2, ..n}, then on the product space
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[Ω,A ,m(·)] as defined in Definition 2.1.10, one has:

p(∩i=ni=1Xi ∈ Wi) =
n∏
i=1

p
i
(Xi ∈ Wi) ∀Wi ⊂ Fi (2.1.7)

p(∩i=ni=1Xi ∈ Wi) =
n∏
i=1

pi(Xi ∈ Wi) ∀Wi ⊂ Fi (2.1.8)

Proof:

p(∩i=ni=1Xi ∈ Wi) =
∑

∀i∈Nn
1 ,∀W

j
i

W j
i ⊂Wi and X−1

i (W j
i )∈Ai

m(∩i=ni=1Xi ∈ W j
i )

=
∑

∀i∈Nn
1 ,∀W

j
i

W j
i ⊂Wi and X−1

i (W j
i )∈Ai

n∏
i=1

mi(Xi ∈ W j
i )

=
n∏
i=1

∑
W j

i ⊂Wi and X−1
i (W j

i )∈Ai

mi(Xi ∈ W j
i )

=
n∏
i=1

p
i
(Xi ∈ Wi)

The first line of the proof used Definition 2.1.3, the second line used Definition

2.1.10, the third line used the fact interchanging
∑

and
∏

have the same mass value

cumulation in the equation, the fourth line used Definition 2.1.3. Similarly, one has:

p(∩i=ni=1Xi ∈ Wi) =
∑

∀i∈Nn
1 ,∀W

j
i

W j
i ∩Wi 6=∅ and X−1

i (W j
i )∈Ai

m(∩i=ni=1Xi ∈ W j
i )

=
∑

∀i∈Nn
1 ,∀W

j
i

W j
i ∩Wi 6=∅ and X−1

i (W j
i )∈Ai

n∏
i=1

mi(Xi ∈ W j
i )

=
n∏
i=1

∑
W j

i ∩Wi 6=∅ and X−1
i (W j

i )∈Ai

mi(Xi ∈ W j
i )

=
n∏
i=1

pi(Xi ∈ Wi)
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Therefore, the structure Pm of [Ω,A ,m(·)] is:

Pm = {p(·)|p(·) ∈ P, p
m

(·) ≤ p(·) ≤ pm(·)}

= {p(·)|p(·) ∈ P,
n∏
i=1

p
mi

(·) ≤ p(·) ≤
n∏
i=1

pmi
(·)}

Moreover, if we denote Pmi
as structure of [Ωi,Ai,mi(·)]. Pi as the set of all the

precise probability measure for [Ωi,Ai], then:

Pmi
= {pi(·)|pi(·) ∈ Pi, pmi

(·) ≤ pi(·) ≤ pmi
(·)}

One also has:

Pm = {p(·)|p(·) =
i=n∏
i=1

pi(·) , pi(·) ∈ Pmi
} (2.1.9)

For imprecise expectation of sum of independent random variables as above, one

has:

E(
i=n∑
i=1

Xi) =
i=n∑
i=1

E(Xi) (2.1.10)

E(
i=n∑
i=1

Xi) =
i=n∑
i=1

E(Xi) (2.1.11)
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Proof:

E(
i=n∑
i=1

Xi) = inf
p(·)∈Pm

∑
ω∈Ω

(
i=n∑
i=1

Xi(ωi))p(ω) by Definition 2.1.8

= inf
p(·)∈Pm

∑
ω∈Ω

(
i=n∑
i=1

Xi(ωi))
i=n∏
i=1

pi(ωi) by Equality 2.1.9

= inf
p(·)∈Pm

∑
∀i∈Nn

1
ωi∈Ωi

(
i=n∑
i=1

Xi(ωi)
i=n∏
i=1

pi(ωi))

= inf
p(·)∈Pm

(
i=n∑
i=1

∑
∀i∈Nn

1
ωi∈Ωi

Xi(ωi)
i=n∏
i=1

pi(ωi))

= inf
pi(·)∈Pmi

(
i=n∑
i=1

∑
ωi∈Ωi

Xi(ωi)pi(ωi))

=
i=n∑
i=1

inf
pi(·)∈Pmi

∑
ωi∈Ωi

Xi(ωi)pi(ωi)

=
i=n∑
i=1

E(Xi)

To prove Equality 2.1.11, one only need to change inf to sup in the above argu-

ment. It is hence omitted here.

Sometimes one maybe also interested in the lower probability of the event
i=n∑
i=1

Xi >

λ where λ is real value. Let ei denote one of possible value that finite random variable

Xi could take, in other words ei ∈ Fi, then one has:

p(
i=n∑
i=1

Xi > λ) = inf
p∈Pm

(
i=n∑
i=1

Xi > λ) by Definition 2.1.6

= inf
∀i∈Nn

1
pi∈Pmi

∑
e2,e3,...en

p1(X1 > λ−
i=n∑
i=2

ei)
i=n∏
i=2

pi(Xi = ei) by Equality 2.1.9

(2.1.12)

=
∑

e2,e3,...en

p
E(X1)

(X1 > λ−
i=n∑
i=2

ei)
i=n∏
i=2

p
E(Xi)

(Xi = ei) (2.1.13)

The last line comes from the fact that the lower expectation measure p
E(Xi)

assign
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as least mass value as possible to the greater value Xi could take. Since each Xi

is independent, each pi can be chosen from each structure Pmi
independently in

Equation 2.1.12. For
i=n∑
i=1

Xi > λ, in Equation 2.1.12, the less value ei in each Xi

takes, the more likely “p1(X1 > λ−
i=n∑
i=2

ei)” will result in zero value in the formation

of the product “p1(X1 > λ−
i=n∑
i=2

ei)
i=n∏
i=2

pi(Xi = ei)”, also the greater value ei in each

Xi takes, the more frequent that value Xi = ei will be used in formation of the

non-zero product “p1(X1 > λ −
i=n∑
i=2

ei)
i=n∏
i=2

pi(Xi = ei)” within the summation. So

to minimize valuation of the expression “
∑

e2,e3,...en

p1(X1 > λ−
i=n∑
i=2

ei)
i=n∏
i=2

pi(Xi = ei)”

in Equation 2.1.12, one should allocate the least possible mass to greater value ei

each Xi could take, which, in essence is taking lower expectation measure for each

independent random variable Xi.

2.2 Nonparametric predictive inference

Nonparametric predictive inference (NPI) is a imprecise probability methodology

developed by Coolen [8, 13, 18]. It is a low structure statistical methodology based

on Hill’s A(n) assumption [29]. When no prior knowledge of the problem is known,

NPI is a suitable method as it requires minimal modeling assumption. NPI has also

shown stronger consistency than other conventional methods [19–21] in empirical

study and no contradiction has been found in the inference it produced so far.

Based on A(n) assumption, with latent variables representable of historical data,

NPI has been developed for Bernoulli data [8], real-valued data [4], data including

right-censored observations [9] and multinomial data [11, 17]. It now currently has

many successful applications in engineering reliability [1,12,14,19,22]. The existing

researches have shown that NPI has good statistical properties and gives reliable

predictive results. It also has recently been applied to the field of finance. [5, 7, 27]

Yet more effort for its application in finance is still demanding.

As one of the attempts in this thesis is to further develop NPI for Bernoulli

data, the Hill’s A(n) assumption is firstly introduced below and based upon that,

the current development of NPI for Bernoulli data is reviewed within which two
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current challenging issues are identified

2.2.1 Hill’s assumption A(n)

As previously mentioned, NPI is based on Hill’s assumption A(n). This assumption

is suitable for situations where no probability distribution regarding a future random

quantity is assumed. The Hill’s assumption A(n) is stated as follows:

Given n exchangeable real-valued observations y−n+1, y−n+2, ..., y0 with order

statistics y(1) < y(2) < .... < y(n). We define y(0) = −∞, y(n+1) = ∞ and as-

sume p(yi = yj) = 0 for i 6= j. Then y−n+1, y−n+2, ..., y0 divide the real-line into

n + 1 intervals Ig = (y(g−1), y(g)) for g = 1, 2, ..., n + 1. The assumption A(n) states

that a future random quantity Yt, t ∈ N+ will fall equally likely into each interval.

(See Figure 2.1).

p(Yt ∈ Ig) =
1

n+ 1
for g = 1, 2...n+ 1; t ∈ N+

probability mass for each interval

Figure 2.1: A(n) assumption

2.2.2 NPI for Bernoulli data

Based on the A(n) assumption, Coolen in 1998 developed NPI for Bernoulli data

using an underlying latent variable representation [8] which will be demonstrated

below.

Given n exchangeable Bernoulli observations {oi}0
i=−n+1, oi ∈ {B,Bc}, where

B and Bc represent two possible outcomes on one single observation, one then has

a set D(n) = {xi}0
i=−n+1 of Bernoulli data with xi ∈ {0, 1}, xi(oi) = 1{B}(oi). By

assuming a latent threshold variable ` and a sequence of latent real values yi cor-

responding to each observation xi with order statistics y(1) < y(2) < .... < y(n) such
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that for all the data xi = 1 if and only if yi < `, xi = 0 if and only if yi > `.

If one calls B a success of the event, then the number of successes in the data is

j = |{i : xi = 1}| = |{i : yi < `}|. Since the sufficient statistics in NPI for Bernoulli

data is n and j, (n, j) will be used subsequently to represented D(n).

Figure 2.2: NPI for Bernoulli data underlying representation

Now by the A(n) assumption, given data (n, j), NPI for Bernoulli data define

the lower probability p
(n,j)

of future observation at t-th stage observing “B” (equiv-

alently Xt ∈ {1}) as value of all probability mass in the interval that must be less

than `, and define the upper probability p(n,j) of future observation at t-th stage

observing “B” as value of all probability mass in the interval that could be less than

“`”. In other words:

p
(n,j)

(Xt ∈ {1}) = |{g : Ig ⊂ (−∞, `)}| = j
n+1

(2.2.14)

p(n,j)(Xt ∈ {1}) = |{g : Ig ∩ (−∞, `) 6= ∅}| = j+1
n+1

(2.2.15)

And with the same principle, for future observation at t-th stage observing “Bc”

(equivalently Xt ∈ {0}). The NPI imprecise probability is:

p
(n,j)

(Xt ∈ {0}) = |{g : Ig ⊂ (`,+∞)}| = n−j
n+1

(2.2.16)

p(n,j)(Xt ∈ {0}) = |{g : Ig ∩ (`,+∞) 6= ∅}| = n−j+1
n+1

(2.2.17)

By assuming A(n) up to A(n+T−1), NPI for Bernoulli data further define the

imprecise probability for the number of observations of “B” within any future T

stages. Mathematically, denote the number of observations of “B” within any future

T stages as ST and denote N+ as the set of all positive natural number then:

ST =
∑
t∈W

Xt where W ⊂ N+ and |W | = T
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There are
(
n+T
n

)
ways to distribute T future observations on the underlying

representation real line such that the ordering is different. With assumption A(n) up

to A(n+T−1) and all observations being interchangeable,
(
n+T
n

)
way of distribution

are assumed to be equally likely.

So given data (n, j), the lower probability p
(n,j)

for observing r occurrences of

“B” within any future T stages count all the ways of distribution such that there

must be r units out of T units of future observation Yw that are less than ` and

the upper probability p(n,j) for observing r occurrences of “B” within any future T

stages count all the ways of distribution such that there could be r units out of T

units of future observation Yw that are less than `. Hence:

p(n,j)(ST ∈ {r}) =
(
n+T
n

)−1 ×
[(
j+r
r

)(
n−j+T−r

T−r

)]
(2.2.18)

p
(n,j)

(ST ∈ {r}) =
(
n+T
n

)−1 ×
[(
j−1+r
r

)(
n−j−1+T−r

T−r

)]
(2.2.19)

With same counting argument, Coolen [8, 13, 18] also gives the formulas of NPI

imprecise probabilities for other form of future random quantity ST which is sum-

maries below:

The most general form of ST is ST ∈ {zi}i=αi=1 , α ≤ T with 0 ≤ zi < zj ≤ T for

i < j

p(n,j)(ST ∈ {zi}i=αi=1 ) =
(
n+T
n

)−1 ×
α∑
i=1

[(
j+zi
zi

)
−
(
j+zi−1

zi−1

)] (
n−j+T−zi

T−zi

)
(2.2.20)

p
(n,j)

(ST ∈ {zi}i=αi=1 ) = 1− p(n,j)(ST ∈ NT
0 \ {zi}i=αi=1 )

(2.2.21)

Let Ni2
i1

denote the set of natural number from i1 to i2 where i1 < i2 and i1, i2 ∈ N.
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Then for ST ∈ Nm
0 and ST ∈ NT

m,

p(n,j)(ST ∈ NT
m) =

(
n+T
n

)−1 ×
T∑
i=m

[(
j+i
i

)(
n−j−1+T−i

T−i

)]
(2.2.22)

p
(n,j)

(ST ∈ NT
m) =

(
n+T
n

)−1 ×
T∑
i=m

[(
j−1+i
i

)(
n−j+T−i

T−i

)]
(2.2.23)

p(n,j)(ST ∈ Nm
0 ) =

(
n+T
n

)−1 ×
m∑
i=0

[(
j−1+i
i

)(
n−j+T−i

T−i

)]
(2.2.24)

p
(n,j)

(ST ∈ Nm
0 ) =

(
n+T
n

)−1 ×
m∑
i=0

[(
j+i
i

)(
n−j−1+T−i

T−i

)]
(2.2.25)

And for ST ∈ Nm2
m1

,

p(n,j)(ST ∈ Nm2
m1

) = p(n,j)(ST ∈ NT
m1

)− p
(n,j)

(ST ∈ NT
m2+1) (2.2.26)

= p(n,j)(ST ∈ Nm2
0 )− p

(n,j)
(ST ∈ Nm1−1

0 ) (2.2.27)

p
(n,j)

(ST ∈ Nm2
m1

) =
(
n+T
n

)−1 ×
m2∑

i1=m1

m2∑
i2=i1

[(
j−1+i1
i1

)(
n−j−1+T−i2

T−i2

)]
(2.2.28)

The current imprecise probability formulas in NPI for Bernoulli data allow one

to compute the lower and upper expectation of monotonic function of future random

quantity ST . This is achieved by constructing the lower expectation measure p
E(f)

and the upper expectation measure p
E(f)

via following formulas.

Denote monotonically increasing function as f↑(·) and monotonically decreasing

function as f↓(·)

For f↑(·), to find p
E(f)

(·), one assigns the least possible mass to the greatest

possible value of ST , thus,

p
E(f)

(f↑(ST = m)) = p
(n,j)

(ST ≥ m)− p
(n,j)

(ST ≥ m+ 1) (2.2.29)

= p(n,j)(ST ≤ m)− p(n,j)(ST ≤ m− 1) ∀m ∈ NT
0

=

(
n+ T

n

)−1

×
[(
j − 1 +m

m

)(
n− j + T −m

T −m

)]

And to find p
E(f)

(·), one assigns the greatest possible mass to the greatest possible
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value of ST , thus,

p
E(f)

(f↑(ST = m)) = p
(n,j)

(ST ≤ m)− p
(n,j)

(ST ≤ m− 1) (2.2.30)

= 1− p(n,j)(ST ≥ m+ 1)− 1 + p(n,j)(ST ≥ m)

= p(n,j)(ST ≥ m)− p(n,j)(ST ≥ m+ 1) ∀m ∈ NT
0

=

(
n+ T

n

)−1

×
[(
j + i

m

)(
n− j − 1 + T −m

T −m

)]

For f↓(·), to find p
E(f)

(·), one assigns the greatest possible mass to the greatest

possible value of ST , thus,

p
E(f)

(f↓(ST = m)) = p
(n,j)

(ST ≤ m)− p
(n,j)

(ST ≤ m− 1) (2.2.31)

= 1− p(n,j)(ST ≥ m+ 1)− 1 + p(n,j)(ST ≥ m)

= p(n,j)(ST ≥ m)− p(n,j)(ST ≥ m+ 1) ∀m ∈ NT
0

=

(
n+ T

n

)−1

×
[(
j + i

m

)(
n− j − 1 + T −m

T −m

)]

And to find p
E(f)

(·), one assigns the least possible mass to the greatest possible

value of ST , thus,

p
E(f)

(f↓(ST = m)) = p
(n,j)

(ST ≥ m)− p
(n,j)

(ST ≥ m+ 1) (2.2.32)

= p(n,j)(ST ≤ m)− p(n,j)(ST ≤ m− 1) ∀m ∈ NT
0

=

(
n+ T

n

)−1

×
[(
j − 1 +m

m

)(
n− j + T −m

T −m

)]

However, the current existing imprecise probability formulas in NPI for Bernoulli

data are unable to compute imprecise expectation for a general function of the

future random quantity ST . Moreover, NPI for Bernoulli data so far is only able to

handle precise Bernoulli data. These two unsolved challenging issues give part of

the motivations of this thesis and will be addressed in Chapter 3.
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2.3 Financial objects, concepts and terminologies

In this section, with reasonable assumptions, under the binomial tree, relevant fi-

nancial objects are defined which be used in later NPI application. Related financial

concepts are also introduced. In the end, some financial terminologies are explained

which provides necessary information for one who is less familiar in finance.

2.3.1 Financial objects and concepts

Since the attempt in this thesis is to applied NPI for Bernoulli data in finance, all

the financial objects of interest are defined under the binomial tree with reasonable

assumptions.

[Asset]: Through the thesis, an asset normally refers to a stock of which has

sufficient participant in trading. We are only interested in the asset price at time T .

The asset price at time T is treated as a random variable AT (ST ) which depends on

another random variable ST . ST is a sum of T units of Bernoulli random variable

Xt ∈ {0, 1} which indicates whether the asset price goes up at time t. Thus,

ST =
T∑
t=1

Xt

The relation between AT (ST ) and ST is stated as followed:

AT (ST ) = a0u
ST dT−ST

where a0 is a fixed value, representing the initial asset price at time T = 0; u is the

magnitude of upward movement in each time stage, u ∈ (1,+∞); d the magnitude

of down movement in each time stage, d ∈ (0, 1); Figure 2.3 provide a graphical

illustration.
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Figure 2.3: Asset price At at time t = 3 in the binomial tree.

Some reasonable assumptions about u, d, and random variable Xt are made,

which renders NPI for Bernoulli data a suitable statistical methodology for later

financial applications.

In a short period of time interval, the trading participants upon a certain asset are

assumed to be relatively same and stable. On aggregate, trading behaviors within a

short period of time could be assumed to be probabilistically homogeneous. Based

on this:

1) u and d are assumed to be constant.
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2) The probability distribution pt of random variable Xt within a short period

of time is assumed to be “stable”. In other words, within a short period of time

interval (a, b), it is assumed that:

sup
t∈(a,b)

pt(Xt ∈ w)− inf
t∈(a,b)

pt(Xt ∈ w) < ε ∀w ⊂ {0, 1} for small ε

Therefore, within a short period of time, the sequence of Xt is approximately ex-

changeable. Consequently, NPI for Bernoulli data is suitable method make inference

about Xt and ST , thus the asset price AT at time T .

[Risk free interest rate r]: Throughout the thesis, it is assumed there exists a

constant continuously compounding risk free interest rate r in the market for one to

invest or borrow cash. In order to make the asset an indeterministic choice to buy

or short sell, the relation 0 < d < er < u is required

[Present value & discount factor]: The existence of risk free interest rate allows

one to compare monetary values which is at different time stage. This is achieved

by calculating the present value PV of the monetary value ft at time t via discount

factor B(t) = ert, which is:

PV (ft) = ft ×B(t)−1 = fte
−rt

[Financial portfolio]: A financial portfolio is a set of financial objects that one

own or owe.

[Financial derivative of an asset] A financial derivative of an asset is a contract

between two parties of which the payoff/loss at a specific time depends on the asset-

property over a time interval. Mathematically speaking, let T be the end time of

a financial derivative. The payoff or loss of a financial derivative of an asset At at

time T is a function f(At, t ∈ {0, T}) whose value depend on the asset price At over

the time interval t ∈ {0, T}. The financial derivative of interest in this thesis are

introduced below.

[European option of a asset] Let x+ denote the maximum value between x and

0, namely

x+ = max(x, 0)
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A European call option gives the holder the right but not obligation to buy

the underlying asset on a certain date T for a certain price K [32, 33]. There are

some equivalent terminologies for “certain date” and “certain price” in the financial

industry. “Expiration date” and “exercise date”, “maturity date” are frequently the

equivalent terminologies for “certain date” while “exercise price” and “strike price”

are the equivalent terminologies for “certain price”.

Mathematically, the value of European call option with maturity date T and

strike priceK is a function of the underlying asset price At. Λc(At, K) with boundary

condition at time T as

Λc(AT , K) = (AT −K)+

For an underlying asset price At evolving as the above description in the binomial

tree, Cox, Ross, & Rubinstein (CRR) developed the binomial options pricing model

in 1979 [25]. In the CRR model, by replicating the performance of the European

option with a self-financing portfolio in each time step, one can find that there exists

a unique arbitrage-free price ΛQ
c (At, K) of the call option at time t (t < T ) with

above boundary condition. And the unique arbitrage-free price ΛQ
c (At, K) of the

call option at time t can be computed via a risk neutral measure Q.

In Q measure, the “risk free” probability of “going up” in each time stage is

q = er−d
u−d for each time stage. For a call option with above boundary condition, one

has:

ΛQ
c (At(St), K) = B(T − t)−1EQ(Λc(AT (ST ), K)|At)

= B(T − t)−1

T−t∑
i=0

(
T − t
i

)
(Atu

idT−t−i −K)+qi(1− q)T−t−i

A European put option gives holder the right but not obligation to sell the

underlying asset on a certain date for a certain price. [32,33]

Mathematically, the value of European put option with maturity date T and

strike price K is a function of underlying asset price At. Λp(At, t) with boundary

condition at time T as
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Λp(AT , K) = (K − AT )+

With the similar replication argument, CRR model also showed that there existed

a unique arbitrage-free price ΛQ
p (At, K) for the put option at time t with above

boundary condition. And ΛQ
p (At, K) could be computed via the same Q measure as

above:

ΛQ
p (At(St), K) = B(T − t)−1EQ(Λp(AT (ST ), K)|At)

= B(T − t)−1

T−t∑
i=0

(
T − t
i

)
(K − AtuidT−t−i)+qi(1− q)T−t−i

In the CRR model, there is no real probability or “risk involved” in the derivation

of arbitrage-free price. The Q measure is not real probability but a convenient way to

compute arbitrage-free price. Although in a complete market, anyone who is willing

to buy at price yt > ΛQ(At, K) or sell at price yt < ΛQ(At, K) for the European

option with boundary condition Λ(AT , K) at time t will become a free money source

for an arbitrager, this behaviour is still rational if:

1) At time t one’s personally expected present value of the European option

payoff under one’s risk measure P is greater than the arbitrage-free price of the op-

tion, ΛP(At, K) = B−1
T−tEP(Λ(AT , K)|At) > ΛQ(At, K), or under one’s risk measure,

the probability of the event Λ(AT , K) > ΛQ(At, K)BT−t at time t is greater than a

thresold value, when one considers to buy.

2)One’s expected present value of the European option under one’s risk measure

is less than the arbitrage-free price of the option, ΛP = B−1
T−tEP(Λ(AT , K)|At) <

ΛQ(At, K), or under one’s risk measure, the probability of the event Λ(AT , K) <

ΛQ(At, K)BT−t at time t is greater than a thresold value when one considers to sell.

In both situations, under one’s risk measure, one is confident enough to make

positive payoff at time T either expectationally or probabilistically.
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2.3.2 Financial terminologies

[Short sell/selling]: Short selling is a financial action when one sells a financial object

which has monetary value but is not owned by the person. One will receive the cash

equal to the price of the financial object at the time one short sells and one is

obligated to buy back the financial object and return to the owner upon a specific

time. Short selling is a rational behaviour when one anticipate the price of the

object is likely to going down in the future time. By short selling, one can exploit

the potential profit from the price decrease of the financial object in the future time.

[Enter a (risk) position]: When one buys or short sells a financial object, we say one

enters a “risk position”, or simply enter a position of this financial object. When

one enters a “position” of an object, one’s capital gain or loss becomes random and

it will depend on the contingent price change of the object until the time one closes

the position.

[Close a (risk) position]: After one enters a position by the mean of buying or

shorting selling, one executes the reverse action by selling the object or buying

the object returning to owner, we said one close the “risk position” or simply the

“position” of the object. Risk positions can be further categorised into short or long

position as below.

[Short position]: When one short sells a financial object which it is not owned by

oneself, we say one enters the “short position” of this object. One is then obligated

to buy back the object and return to the owner upon a specific time.

[Long position]: When one buys a financial object, we say one enters the long

position. One is then anticipating that the price of the object would increase in the

future.

Mathematically, given initial capital C, when one keeps all one’s cash risk free

investment, one’s capital gain ∆(T ) = C(erT − 1) is a deterministic function of time

T .

In any time stage, when one enters multiple positions of different financial object

using part of one’s total cash, then one’s capital gain or loss at any future time is

a linear combination of multiple stochastic processes and the deterministic function

of the remaining cash one invest in risk free rate.



Chapter 3

Further development of NPI for

Bernoulli data

In this chapter, based on the imprecise probability definitions in Chapter 2, a gen-

eral algorithm to construct imprecise expectation measures for a general function

of a finite random variable is presented. Subsequently, using the underlying latent

variable representation of NPI, the mass function of NPI for Bernoulli data is con-

structed. With a one to one mapping between the mass function value and path

counting within the lattice, the constructed mass function is verified that it satisfies

the mass function defined in Definition 2.1.3 and produce same imprecise proba-

bility value as mentioned in the previous chapter. This constructed mass function

also leads to a new formula in lower probability and its consistence is proved. With

the proposed general algorithm and the constructed mass function, one is now able

to find the imprecise expectation measure for a general function of multiple future

stages observations ST . An example of how to apply the algorithm is presented.

3.1 Greedy mass assignment algorithm

A greedy mass assignment algorithm (GMA) is presented in this section for one to

construct imprecise expectation measures for a general function of a finite random

variable on an imprecise probability space.

Consider an imprecise probability space [Ω,A = σ(L−1),m(·)], where L is a

25
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finite random variable L : Ω −→ F , F is a finite set with N elements and a function

f : F −→ M , M is a finite order set, therefore f could induces a order � on F by

the order of M .

With the induced order � on F , F now can be written as F = {iα}α=N
α=1 , and

ik � ij for k > j.

Let P(·) denote the power set operator and let Qy = (Q1
y, Q

2
y, Q

3
y, Q

4
y) denote the

yth stage of the algorithm, where Q1
y denotes the residual elements in F that have

not been yet assigned mass value; Q2
y denotes the current highest order element in

Q1
y, if there is a tie, then they are equally the highest order elements; Q3

y denotes

residual sets in P(F ) of which the mass value have not yet been used; Q4
y denotes

records of elements in F that have been assigned a probability mass.

The algorithm moves from yth stage to (y + 1)-th stage in following way:

0. Check if Q1
y = ∅, if Q1

y = ∅, the algorithm stops, else if Q1
y 6= ∅ proceed with

following steps.

1. Use the mass function to evaluate and assigned the current maximum possible

mass value
∑
ε∈Q3

y

ε∩Q2
y 6=∅

m(ε) to current highest order element Q2
y.

2. Record the mass assignment in Q4
y+1, namely Q4

y+1 = Q4
y∪{(Q2

y,
∑
ε∈Q3

y

ε∩Q2
y 6=∅

m(ε))}.

3. Move to next stage Qy+1 = (Q1
y+1, Q

2
y+1, Q

3
y+1, Q

4
y+1), where Q1

y+1 = Q1
y \Q2

y,

Q2
y+1 = highest order element in Q1

y+1 with respect to the defined order �, Q3
y+1 =

Q3
y \ {ε|ε ∈ Q3

y, ε ∩Q2
y 6= ∅} and Q4

(y+1) = Q4
y ∪ {(Q2

y ,
∑
ε∈Q3

y

ε∩Q2
y 6=∅

m(ε))}.

Assuming the most general case that the mass function has non zero mass value

for all elements in P(F ) and there is no tie in the F with respective to the order

�, the algorithm initiates at stage Q0 = (Q1
0, Q

2
0, Q

3
0, Q

4
0) with Q1

0 = F = {iα}α=N
α=1 ,

Q2
0 = iN , Q3

0 = P(F ), Q4
0 = ∅. After N iterations, the algorithm will stop and one

thus find the upper expectation measure from Q4
N .

To find the lower expectation measure, one simply need to use the reversed order

of � in the algorithm.
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3.2 Mass function of NPI for Bernoulli data

In this section, the goal is to construct mass function in NPI for Bernoulli data.

To achieve it, the sample space and event space of NPI for Bernoulli data is firstly

specified below:

Let A<∞ denotes finite Cartesian product of the set A.

The sample space Ω in NPI for Bernoulli data is then Ω = {B,Bc}<∞ =

{B,Bc}1 × {B,Bc}2 × ...× {B,Bc}t × ...× {B,Bc}n<∞.

The event space A of NPI for Bernoulli data for a single future stage observation

is A = σ(X−1
t ), where σ(·) denotes the operator which generates the smallest sigma

algebra using a collection of set inside the argument (·) and Xt is a Bernoulli random

variable on future t-th stage. Xt : Ω −→ {0, 1}, O ∈ Ω

Xt(O) = 1{B}t(O)

The event space A of NPI for Bernoulli data for multiple future stages observa-

tions is A = σ(S−1
T ), where ST is a sum of T units of Bernoulli random variables

Xt on different future stages.

ST =
∑
t∈W

Xt where W ⊂ N+ and |W | = T

3.2.1 NPI for Bernoulli data in a single future stage obser-

vation

Assume A(n), given data (n, j) in past n history observation, the mass function m(n,j)

of NPI for Bernoulli data for space [Ω = {B,Bc}<∞,A = σ(X−1
t )]. ∀w ∈ N could

be constructed as:

m(n,j)(Xt ∈ {1}) = m(Yt < `) = j
n+1

m(n,j)(Xt ∈ {0}) = m(Yt > `) = n−j
n+1

m(n,j)(Xt ∈ {0, 1}) = m(Yt < ` or Yt > `) = 1
n+1

m(n,j)(Xt ∈ ∅) = m(Yt ∈ ∅) = 0
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where Yt is the latent variable representation of Xt, and the mass function value

for Xt ∈ {0, 1} is given by the A(n) assumption in the situation where the order of

latent variable Yt and threshold latent variable ` is unknown. (See Figure 3.1.)

uncertain probability mass for one unit of  or 

Figure 3.1: NPI for Bernoulli data in single future stage observation

It could be verified that the constructed mass function above satisfies the Defi-

nition 2.1.3. (m(n,j)(∅) = 0; m(n,j)(ε) ≥ 0 ,∀ε ∈ σ(X−1
t ) ;

∑
ε∈A

m(n,j)(ε) = 1)

Moreover, with imprecise probability p and p defined in Definition 2.1.3, the

constructed mass function above yields identical imprecise probability values for Xi

as shown in previous chapter Equality 2.2.14-2.2.17

For example, given data (n, j), the imprecise probability of the event that future

t-th stage observation is “B”, or equivalently “Xt ∈ {1}” is :

p
(n,j)

(Xt ∈ {1})

=
[
p

(n,j)
(Xt ∈ {1}), p(n,j)(Xt ∈ {1})

]

=

 ∑
ε∈A

ε⊂{B}t

m(n,j)(ε),
∑
ε∈A

ε∩{B}t 6=∅

m(n,j)(ε)


=
[
m(n,j)(Xt ∈ {1}) +m(n,j)(Xt ∈ ∅) , m(n,j)(Xt ∈ {1}) +m(n,j)(Xt ∈ {0, 1})

]
=

[
j

n+ 1
,
j + 1

n+ 1

]

Similarly, one can have

p
(n,j)

(Xt ∈ {0}) =

[
n− j
n+ 1

,
n− j + 1

n+ 1

]
p

(n,j)
(Xt ∈ {0, 1}) = [1, 1]

p
(n,j)

(Xt ∈ ∅) = [0, 0]
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3.2.2 NPI for Bernoulli data in multiple future stages ob-

servations

Assume A(n) up to A(n+T−1), given data (n, j), the mass function m(n,j) of NPI

for Bernoulli data NPI for the space [Ω = {B,Bc}<∞,AT = σ(S−1
T )] could be

constructed as followed:

Define operator C which generates a collection of subset which contains only

one value or several consecutive positive values in a consecutive positive integer set.

Then,

C (Ni2
i1

) = {Nj2
j1
|j1, j2 ∈ Ni2

i1
, i1 ≤ j1 ≤ j2 ≤ i2}.

Denote the set BT = {S−1
T (a)|a ∈ C (NT

0 )}.

The NPI mass function m(n,j)(·) : AT → [0, 1] only assigns non-zero value to

element in the set BT = {S−1
T (a)|a ∈ C (NT

0 )} . The rest of elements in AT have

zero mass.

m(n,j)(ST ∈ ε) =


(
j−1+r1
r1

)(
n−j−1+T−r2

T−r2

)
×
(
n+T
n

)−1
for ε = Nr2

r1
∈ C (NT

0 ),

0 otherwise.

(3.2.1)

The mass value for ST ∈ Nr2
r1

can be interpreted as the shared mass that r1 up

to r2 out of T future observations are successes. In other words, at least r1 out of T

future observations are successes, and at least T − r2 out of T future observations

are failures, and the rest r2 − r1 out of T future observations are uncertain. So the

corresponding way of distribution in the latent representation is as Figure 3.2.

at least elements of
into the absolute success intervals 

are distributed at least elements of
into the absolute failure intervals 

are distributed 

Total number of such ordering is Total number of such ordering is 

one way to distributed 
elements of

into uncertain  
interval  

Figure 3.2: NPI for Bernoulli data in multiple future stages observations

Ahmad [1] found that there is a one to one mapping between NPI imprecise
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probability for ST and lattice path counting in the n × T lattice. The above mass

function construction also has its corresponding lattice path counting in the n× T

lattice. We used this fact to verify that the constructed mass function m(n,j) satisfied

Definition 2.1.3 and also produces the same imprecise probability values for ST as

mentioned in the previous chapter.

In a n × T lattice, the total number of paths from (0,0) to (n,T) which allow

only upward and rightward movement is
(
n+T
n

)
.

With data (n, j), the mass value for ST ∈ Nr2
r1

is
(
j−1+r1
r1

)(
n−j−1+T−r2

T−r2

)
, which

corresponds to number of paths from (0, 0) to (n, T ) that must pass through (j −

1, r1), (j, r1), (j, r2),(j + 1, r2), indicated as the red tunnel in the Figure 3.3.

Figure 3.3:
(
j−1+r1
r1

)(
n−j−1+T−r2

T−r2

)
paths from (0,0) to (0,T) passing the red tunnel

which corresponds to the mass value for Nr2
r1

Now, let’s verify the above mass function m(n,j) construction satisfied Definition

2.1.3

First, ∅ /∈ BT , thus m(n,j)(∅) = 0 and ∀ε ∈ σ(S−1
T ), we always have non negative

number of path counting, thus m(n,j)(ε) ≥ 0

Second, one need to show
∑
ε∈AT

m(n,j)(ε) = 1
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∑
ε∈AT

m(n,j)(ε) =
∑
ε∈BT

m(n,j)(ε) =
∑

ε∈C (NT
0 )

m(n,j)(ST ∈ ε = Nr1
r2

)

=
∑

r1,r2∈NT
0

0≤r1≤r2≤T

(
j − 1 + r1

r1

)(
n− j − 1 + T − r2

T − r2

)
×
(
n+ T

n

)−1

=
T∑

r1=0

T∑
r2=r1

(
j − 1 + r1

r1

)(
n− j − 1 + T − r2

T − r2

)
︸ ︷︷ ︸×

(
n+ T

n

)−1

“This quantity is number of paths that have to pass through (r1, j − 1)

and (r2, j + 1) for some 0 ≤ r1 ≤ r2 ≤ T which is number of all the paths

from (0, 0) to (n, T )”

=

(
n+ T

n

)
×
(
n+ T

n

)−1

= 1

To verify the constructed mass function m(n,j) produces same imprecise probabil-

ity value for ST , we used the fact from Ahmad’s paper [1] that the lower probability

for ST ∈ Nr2
r1

is total number of paths from (0, 0) to (n, T ) that enter in any of

{(j−1, i)}i=r2i=r1
channels and come out from {(j+ 1, i)}i=r2i=r1

channels. (See Figure 3.4

indicated by red colour.)
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Figure 3.4: Paths that go through red channels correspond to lower probability mass
assignment

So the lower probability p
(n,j)

for ST ∈ Nr2
r1

is

p
(n,j)

(ST ∈ Nr2
r1

) =

(
n+ T

n

)−1

×
r2∑

i1=r1

r2∑
i2=i1

[(
j − 1 + i1

i1

)(
n− j − 1 + T − i2

T − i2

)]

By the definition of lower probability in the previous chapter, the constructed

mass function also yield the same lower probability value for ST ∈ Nr2
r1

as they have

the same pathing counting principle in the lattice.

∑
ε∈C (NT

0 )

ε⊂Nr2
r1

m(n,j)(ST ∈ ε) =

(
n+ T

n

)−1

×
r2∑

i1=r1

r2∑
i2=i1

[(
j − 1 + i1

i1

)(
n− j − 1 + T − i2

T − i2

)]

Similarly for the upper probability definition, consider ST ∈ Nr2
r1

p(n,j)(ST ∈ Nr2
r1

)

=

(
n+ T

n

)−1

×

[
T∑

i=r1

(
j + i

i

)(
n− j − 1 + T − i

T − i

)
−

T∑
i=r2+1

(
j − 1 + i

i

)(
n− j + T − i

T − i

)]
=

∑
ε∈C (NT

0 )

ε∩Nr2
r1
6=∅

m(n,j)(ST ∈ ε)
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Both values are equal to the total number of paths from (0, 0) to (n, T ) that

enter in any of {(j − 1, i)}i=r2i=0 channels and come out from any of {(j + 1, i)}i=Ti=r1

channels. (See Figure 3.5 indicated by red colour.)

Figure 3.5: Paths that go through red channels correspond to the upper probability
mass assignment

With the constructed mass function, one now can directly compute the lower

probability for the most general form of ST instead of using the conjugacy property

as Formula 2.2.21 in previous chapter.

Recall the most general form of ST is ST ∈ {zi}i=αi=1 , α ≤ T with 0 ≤ zi < zj ≤ T

for i < j.

Let ̂ and ̂ be the shorthands for sup and inf operator respectively. Since the

mass function of NPI for precise Bernoulli data assign only assign non zero value

to consecutive integer set in C (NT
0 ), if one rewrite ST ∈ {zi}i=αi=1 as ST ∈ ∪

1≤h≤l
Rh

where each Rh, h ∈ Nl
1 is a consecutive integer set and R̂h+1 < R̂h+1. For example,

{zi}i=αi=1 = {4, 7, 9, 10} = ∪
1≤h≤3

Rh = {4} ∪ {7} ∪ {9, 10}, then:
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p
(n,j)

(ST ∈ {zi}i=αi=1 ) = p
(n,j)

(ST ∈ ∪
1≤h≤l

Rh)

=
l∑

h=1

p
(n,j)

(ST ∈ Rh)

=
l∑

h=1

∑
a∈C (Rh)

m(n,j)(ST ∈ a)

=

(
n+ T

n

)−1

×
l∑

h=1

∑
r1,r2∈Rh
r1≤r2

[(
j − 1 + r1

r1

)(
n− j − 1 + T − r2

T − r2

)]

3.2.3 Consistence of Mass function in NPI for Bernoulli

data

One can show that the mass function in the NPI for Bernoulli data is consistent as

defined in Definition 2.1.5.

Given data (n, j), NPI for Bernoulli data induce a mass function on [Ω =

{B,Bc}T ,AT = σ(S−1
T )] ∀T ∈ N. Let P denote the power set operator then:

AT = {S−1
T (ε)|ε ∈ P(NT

0 )}

Define a binary operator � : P(NT
0 )× NT

0 −→ P(NT
0 ) as following:

For A ∈ P(NT
0 ) and b ∈ NT

0

A� b = ∪
a∈A

∪
j∈Nb

0

{max(0, a− j)}

For example, {1, 5, 9}� 2 = {0, 1, 3, 4, 5, 7, 8, 9}

For [Ω,Ai,m
i
(n,j)], i ∈ ZT1 . The case that “εk ∈ Ak, εl ∈ Al, k 6= l, εk ⊂ εl” could

happen in NPI for Bernoulli data is when

Ak = {S−1
k (ε)|ε ∈ P(Zk0)} , Sk =

k∑
i1=1

Xri1

Al = {S−1
l (ε)|ε ∈ P(Zl0)} , Sl =

l∑
i2=1

Xri2

l < k and Sk ∈ ε1 for some ε1 ∈ P(Zk0) and ∃ε2 ∈ P(Nl
0) such that ε1 � (k − l) ⊂ ε2



3.3. Construction of imprecise expectation measures for a general
function of ST 35

then εk ⊂ εl where εk = {ω|Sk(ω) ∈ ε1} and εl = {ω|Sl(ω) ∈ ε2}. Since NPI

Bernoulli lower probability has the property:

p
(n,j)

(ST ∈ ∪
1≤h≤l

Rh) =
l∑

h=1

p
(n,j)

(ST ∈ Rh)

where Rh are different consecutive integer blocks, one only need show the case

ε1 = Nm2
m1

and ε2 = Nm2

m1−(k−l) has the following:

p
(n,j)

(Sl ∈ Nm2

m1−(k−l)) ≥ p
(n,j)

(Sk ∈ Nm2
m1

) ∀(l − k) ∈ Z

And this is true if:

p
(n,j)

(Sk−1 ∈ Nm2
m1−1) ≥ p

(n,j)
(Sk ∈ Nm2

m1
)

which is followed by Formulae 2.2.28

3.3 Construction of imprecise expectation mea-

sures for a general function of ST

With the mass function in NPI for Bernoulli data, one now can use the proposed

general algorithm in Section 3.1 to construct imprecise expectation measures for a

general function of ST and hence enable the computation of imprecise expectations

of a general function of ST . An example is provided below.

Example: Consider [Ω = {B,Bc}5,A5 = σ(S−1
5 ),m(n,j)(S5)], given Bernoulli

data (n, j) and a function f of S5 induce a order � on N5
0 which form a partition

I = {{2, 4}, {1, 3}, {0, 5}} of N5
0 with order as they appear. So {2, 4} � {1, 3} �

{0, 5} and there are ties between 2 and 4, 1 and 3, also 0 and 5.

Since the NPI induced Bernoulli imprecise space only have non zero mass on the

set C (N5
0), one now can initiate the algorithm with Q3

y = C (N5
0) instead of P(N5

0),

which could reduce some steps in the mass assignment.

Apply GMA algorithm, start with Q0 = (Q1
0, Q

2
0, Q

3
0, Q

4
0) = (N5

0, {2, 4},C (N5
0), ∅)
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One assigns all probability mass of the elements in Q3
0 = C (N5

0) which have non

empty intersection with {2, 4} to {2, 4}. Denote the set of those elements as G1, then

G1 = {{0, 1, 2, 3, 4, 5}, {0, 1, 2, 3, 4}, {1, 2, 3, 4, 5}, {0, 1, 2, 3}, {1, 2, 3, 4}, {2, 3, 4, 5},

{0, 1, 2}, {1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {2}, {4}}, And denote

the probability mass value assign to {2, 4} as p1. Then p1=
∑
ε∈G1

m(n,j)(S5 ∈ ε).

Now one moves to the next stage Q1 = (Q1
1, Q

2
1, Q

3
1, Q

4
1), where Q1

1 = {0, 1, 3, 5},

Q2
1 = {1, 3}, Q3

1 = C (Z5
0) \G1, Q4

1 = {({2, 4}, p1)}.

One now starts to assign probability mass to second order element, in this case

is Q2
1 = {1, 3}. Denote the set of elements in Q3

1 which have non empty intersection

with {1,3} as G2, then G2 = {{0, 1}, {1}, {3}}. Also denote the probability mass

value assigned to {1, 3} as p2, then p2 =
∑
ε∈G2

m(n,j)(S5 ∈ ε) to {1, 3}.

Now one can move to stage Q2 = (Q1
2, Q

2
2, Q

3
2, Q

4
2), where Q1

2 = {0, 5}, Q2
2 =

{0, 5}, Q3
2 = Q3

1 \G2, Q4
2 = {({2, 4}, p1), ({1, 3}, p2)}.

Since Q1
2 6= ∅, one now still needs to move to the next stage, one assigns proba-

bility mass to the last order element, which is Q2
2 = {0, 5}. The residual elements in

Q3
2 are {{0}, {5}} and both of them have non empty intersection with {0,5}. Denote

the set of the residual elements in Q3
2 as G3, and probability mass value assigned to

{0, 5} as p3, then p3 =
∑
ε∈G3

m(n,j)(S5 ∈ ε).

Now move to stage Q3 = (∅, ∅, ∅, {({2, 4}, p1), ({1, 3}, p2), ({0, 5}, p3)}) and stop.

In total, (1+5)(2+5)
2

= 21 mass atoms are assigned and distributed into {p1, p2, p3}

and Q4
3 is the upper expectation measure for f(S5). To find the lower expectation

measure of f(S5), one simply needs to use the reverse order of �.

3.4 NPI for imprecise Bernoulli data

NPI for imprecise Bernoulli data was firstly considered by Coolen in 2008 [16].

Coolen presented the condition reasoning in detail. However, the attention was

limited to the set-value data and the computation of imprecise probability remains

unsolved. By extending the path counting concept in the lattice representation of

NPI for Bernoulli data and considering the most general form of imprecise Bernoulli

data, we further develop NPI for imprecise Bernoulli data in this section.
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Let us firstly recall the precise data mass function Formula 3.2.1 below:

m(n,j)(ST ) =


(
j−1+r1
r1

)(
n−j−1+T−r2

T−r2

)
×
(
n+T
n

)−1 ∃ε ∈ C (NT
0 ) s.t. ST ∈ ε = Nr2

r1

0 @ε ∈ C (NT
0 ) s.t. ST ∈ ε = Nr2

r1

and also its corresponding path counting Figure 3.3

Figure 3.6: Figure 3.3 with new description

Given data (n, j), if we defined x = j as a data tunnel, indicated by the purple

line in Figure 3.6 as “data tunnel”, ST ∈ Nr2
r1

as inference target, path upward

movement in the y direction as increment, then legitimate paths in the precise

data mass function Formula 3.2.1 are the paths of which the increment on the data

tunnel covers exactly the inference target. If the inference target ST belongs to

some non consecutive number sets, then the data tunnel will not be able to cover

the inference target, therefore no legitimate path exists. This explains why when

@ε ∈ BT s.t ST ∈ ε, the precise data mass function Formula 3.2.1 yields zero value.

Analogously, given imprecise Bernoulli data which is the form of several intervals,

one can extend the legitimate paths concept and constructs the mass function for

imprecise Bernoulli data.
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3.4.1 The mass function and its corresponding lattice path

counting

Given a set D(n) = {xi}0
i=−n+1 of imprecise Bernoulli data with xi ∈ {0, 1} and

J = |{i : xi = 1 ∧ xi ∈ D(n)}| = {j1, j2, j3, ..., je}, e ≤ n, denoted the imprecise data

as (n, J), one could rewrite the set J as J = ∪
1≤i≤k

Ji, k ≤ n where each Ji = Nb
a for

some a,b, and Ĵi + 1 < Ĵi+1, ∀i

Still consider the random variable ST defined before and rewrite each event as

ST ∈ ∪
1≤h≤l

Rh, l < T where each Ri is set with same form of Ji.

Define J0 = {−1}, Jk+1 = {n+ 1}, R0 = {0}, Rl+1 = {T}

Then NPI mass function for ST ∈ ∪
1≤h≤l

Rh is:

m(n,J= ∪
1≤i≤k

Ji)(ST ∈ ∪
1≤h≤l

Rh) (3.4.2)

=

(
n+ T

n

)−1

×
∑
C

k+1∏
i=1

(Ĵi − Ĵi−1 − 2 + r2i−1 − r2i−2

Ĵi − Ĵi−1 − 2

)(Ĵi−1 − Ĵi−1 + r2i−2 − r2i−3

Ĵi−1 − Ĵi−1

)
where C = {{ri}2k+1

−1 |r0 ∈ R0 and r−1 ∈ R0 ; r1 = R̂1 ; r2k = R̂l ; r2k+1 ∈

Rl+1 ; ∀n ∈ Nk−1
0 , r1+2n ∈ Rh and r2+2n ∈ Rh for some h ∈ Nl

1 ; rx ≤ ry,∀x ≤

y ; let R′i = Nr2i
r2i−1

for i ∈ Nk
1, then ∪

i∈Nk
1

R′i = ∪
i∈Nl

1

Ri}.

In the case l > k, C = ∅ and the mass function yields zero value.

When J = Nb
a, the above formula could be simplified to:

m(n,J=Nb
a)(ST ∈ {R1})

=

(
n+ T

n

)−1

×

[(
a− 1 + R̂1

a− 1

)(
b− a+ R̂1 − R̂1

b− a

)(
n− b− 1 + T − R̂1

n− b− 1

)]

The summing logic C of the NPI imprecise data mass function Formula 3.4.2, in
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essence, has the same notion of legitimate path counting in the NPI lattice repre-

sentation graph. The only modification is that, given data (n, J) with k consecutive

number blocks J = ∪
1≤i≤k

Ji, we now have k units of data tunnels and they are

thicker than the precise case. This results in non zero mass value for inference

target ST ∈ ∪
1≤h≤l

Rh with l ≤ k consecutive number blocks.

We illustrate imprecise data legitimate paths counting with a small example

when k = 3 in the data, in other words, J ∈ ∪
1≤i≤3

Ji in below.

three Data tunnels

Figure 3.7: Data tunnels in imprecise data path counting

Figure 3.7 shows the data tunnels in the imprecise data case. To be a legitimate

path fitting the criteria that the increment on the data tunnels covers exactly the

inference target, depending on the inference target, there are only certain numbers

of entrance and exit points for the path to access the data tunnels.

Let us firstly consider reference target l = 2 < k, ST ∈ ∪
1≤h≤2

Rh
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Entrance points

Exit points

Figure 3.8: Legitimate entrance and exit points for each data tunnels when J ∈⋃
1≤i≤3

Ji and ST ∈
⋃

1≤i≤2

Rh

In this case, the legitimate entrance and exit points for each data tunnels are

illustrated in Figure 3.8. Due to the existence of legitimate entrance and exit points

and the paths are only allowed to going upward or rightward, one knows that the

maximum cover range for one data tunnels is one block Ri. So when l < k, namely

the number of blocks in the inference target ST is less than the number of blocks in

the data J , there could be some slackness in the usage of the data tunnels. Therefore

the legitimate paths are allowed to partially cover the some of inference blocks in

some data tunnels or skip using some of the data tunnels. Using the example above,

we illustrate this in Figure 3.9 and Figure 3.10.
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Figure 3.9: Example of paths that partially cover one of inference block in one data
tunnel

In Figure 3.9, the paths only partially cover first the inference target of ST using

the first data tunnel J1, in order to be legitimate, these paths must end at point

(n, T ) passing through all the green line and one of yellow or pink line.

Figure 3.10: Example of paths that skipping using one of data tunnels

In Figure 3.10, the paths could skip using the second data tunnel J2 by passing
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through all the green line and yellow line or skipping using the third data tunnel J3

by passing through all the green line and pink line.

When l = k, namely the number of block in the inference target ST is equal

the number of block in the data J , there is no slackness in the usage of the data

tunnels. Thus, all the legitimate paths have to fully use each data tunnel to cover

one inference target block. Using the same example, we demonstrate this in Figure

3.11.

Figure 3.11: Example of paths which fully use each data tunnels when the number
of blocks in the data and the inference target are equal.

In Figure 3.11, since k = l = 3, the paths have to fully use each data tunnel Ji

to cover each inference target Ri for all i ∈ {1, 2, 3} by passing through all the green

line.

Since the maximum inference target cover range for one data tunnels is one block

Ri, when l > k, the number of blocks in the inference target ST is greater the number

of blocks in the data J , there is not enough number of data tunnels to cover all the

reference target blocks. Therefore, no legitimate path exists in this case.
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3.4.2 The imprecise probability of NPI for imprecise Bernoulli

data

Before calculating the lower and upper probability for NPI imprecise Bernoulli data,

it is useful to see what subsets in the sample space Ω have non zero mass value in

the mass function.

Denote b·c as the floor function. bxc = max{z| z ∈ Z and z ≤ x}

Let us firstly recall the operator C defined previously and extend it to Ce, e ∈ N+

C (Ni2
i1

) = {Nj2
j1
|j1, j2 ∈ Ni2

i1
, i1 ≤ j1 ≤ j2 ≤ i2}

Ce(Ni2
i1

) = {∪
y
Nj(y,2)
j(y,1)
|j(y,1), j(y,2) ∈ Ni2

i1
, j(y,1) ≤ j(y,2), j(y,2) < j(y+1,1) + 1 ∀y ∈ Ne

1}

Ce will generates a collection of subsets which contain e disjoint blocks consecu-

tive positve values of the argument Ni2
i1

. One could know that the previous defined

C = C1.

Let k be the number of consecutive integer blocks in the data, l be number

of consecutive integer blocks in the reference target. One could know for ST , the

maximum number for l is bT
2
c + 1. Let k∗ = min(k, bT

2
c + 1) , then the set Bk

T =

{S−1
T (a) | a ∈ ∪

e∈Nk∗
1

Ce(NT
0 )} contains all the subsets of Ω which has non zero mass

value. This comes from the fact that when the number of blocks l in the reference

target exceeds the number of blocks k in the data, the mass function yields zero

value.

The NPI lower probability for ST ∈ ∪
1≤h≤l

Rh is then:
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p
(n,J= ∪

1≤i≤k
Ji)

(ST ∈ ∪
1≤h≤l

Rh)

=
∑

ε∈P(NT
0 )

ε⊂ ∪
1≤h≤l

Rh

m(n,J)(ST ∈ ε) (3.4.3)

=
∑

ε∈ ∪
e∈Nbk

∗c
1

Ce(NT
0 )

ε⊂ ∪
1≤h≤l

Rh

m(n,J)(ST ∈ ε) (3.4.4)

=

(
n+ T

n

)−1

×
∑
C

k+1∏
i=1

(Ĵi − Ĵi−1 − 2 + r2i−1 − r2i−2

Ĵi − Ĵi−1 − 2

)(Ĵi−1 − Ĵi−1 + r2i−2 − r2i−3

Ĵi−1 − Ĵi−1

)
(3.4.5)

where C = {{ri}2k+1
−1 |r0 ∈ R0 and r−1 ∈ R0 ; r2k+1 ∈ Rl+1 ; ∀n ∈ Nk−1

0 , r1+2n ∈

Rh and r2+2n ∈ Rh for some h ∈ Zl1 ; rx ≤ ry,∀x ≤ y}.

Equality 3.4.5 comes from legitimate paths for the NPI lower probability counting

in the lattice representation. From Equation 3.4.3, one could know the legitimate

paths in the lower probability are the paths of which the increment on the data

tunnels only covers any subset of the inference target. In other words, using example

J ∈ ∪
1≤i≤3

Ji and ST ∈ ∪
1≤h≤3

Rh, the lower probability is total number of paths that

within each data tunnels only use any subset of the entrance and exit points to reach

(n, T ) from (0, 0) in Figure 3.11.

When J = Nb
a, the lower probability formula for imprecise data could be simpli-

fied to:

p
(n,J=Nb

a)
(ST ∈ ∪

1≤h≤l
Rh)

=
∑

1≤i<≤l

∑
r(i,1),r(i,2)∈Ri

r(i,2)>r(i,1)

[(
a− 1 + r(i,1)

a− 1

)(
b− a+ r(i,2) − r(i,1)

b− a

)(
n− b− 1 + T − r(i,2)

n− b− 1

)]

×
(
n+ T

n

)−1

(3.4.6)

Moreover, consider ST ∈ Nb
a, let c,d be the integer numbers and 0 ≤ c ≤ d ≤ n,
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the lower probability formula for imprecise data has following equality:

p
(n,J1=ε1∪{c,d})

(ST ∈ Nb
a) = p

(n,J2=ε2∪{c,d})
(ST ∈ Nb

a) ∀ε1, ε2 ⊂ Nd
c (3.4.7)

This equality comes from the fact that when the reference ST ∈ Nb
a is one block of

consecutive integer number, the lower probability path counting for J = {c, d} is

exactly the same lower probability path counting for J ′ = {c, d} ∪ ε′ with ε′ ⊂ Nd
c .

Figure 3.12 gives one graphical example.

Figure 3.12: J1 = ∅∪{c, d} and J2 = {c′, d′}∪{c, d} have the same lower probability
counting for ST ∈ Nb

a

In Figure 3.12, given reference target ST ∈ Nb
a, c < c′ < d′ < d, the data

J1 = {c, d} and data J2 = {c, c′, d′, d} have the same legitimate paths counting in

the lower probability formula, the legitimate paths of the lower probability in both

case are the paths enter any left-most entrance points and exit from any right-most

exit point. With the imprecise probability conjugacy property p(Ac) = 1 − p(A),

one also has:

p(n,J1=ε1∪[0,c)∪(d,n])(ST ∈ Nb
a) = p(n,J2=ε2∪[0,c)∪(d,n])(ST ∈ Nb

a) ∀ε1, ε2 ⊂ Nd−1
c−1

(3.4.8)

Using the path counting argument, one also has the NPI upper probability for

imprecise Bernoulli data. The NPI upper probability for imprecise Bernoulli data
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of ST ∈ ∪
1≤h≤l

Rh is:

p(n,J= ∪
1≤i≤k

Ji)
(ST ∈ ∪

1≤h≤l
Rh)

=
∑

ε∈P(NT
0 )

ε∩ ∪
1≤h≤l

Rh 6=∅

m(n,J)(ST ∈ ε) (3.4.9)

=
∑

ε∈ ∪
e∈Nbk

∗c
1

Ce(NT
0 )

ε∩ ∪
1≤h≤l

Rh 6=∅

m(n,J)(ST ∈ ε) (3.4.10)

=

(
n+ T

n

)−1

×
∑
C

k+1∏
i=1

(Ĵi − Ĵi−1 − 2 + r2i−1 − r2i−2

Ĵi − Ĵi−1 − 2

)(Ĵi−1 − Ĵi−1 + r2i−2 − r2i−3

Ĵi−1 − Ĵi−1

)
(3.4.11)

where C = {{ri}2k+1
−1 |r0 ∈ R0 and r−1 ∈ R0 ; r2k+1 ∈ Rl+1 ; ∀i , ri ∈ NT

0 ; ∀n ∈

Nk
1, ∀h ∈ Zl1, Nr2n

r2n−1
∩Rh 6= ∅ ; rx ≤ ry,∀x ≤ y }.

The legitimate paths in the NPI upper probability for imprecise data are the

paths of which the increment on any data tunnels contains any subset of the inference

target.

To find the imprecise expectation measure of f(ST ) in NPI for imprecise Bernoulli

data, one simply needs to use algorithm in Section 3.1 and initiate it with Q3
0 =

∪
e∈Nbk

∗c
1

Ce(NT
0 ).

3.4.3 Property of NPI imprecise probability for Bernoulli

imprecise data

In this section, we present the property of NPI for imprecise Bernoulli data, followed

by a numerical example. This property is then explained by the lattice representa-

tion path counting argument.

Property Given data (n, J) and reference target ST ∈ ε. The imprecision in

the imprecise probability increase as the imprecision in the data J increases, more
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precisely one has:

p
(n,J1)

(ST ∈ ε) ≥ p
(n,J2)

(ST ∈ ε) if J1 ⊂ J2 (3.4.12)

p(n,J1)(ST ∈ ε) ≤ p(n,J2)(ST ∈ ε) if J1 ⊂ J2 (3.4.13)

Table 3.1: Numerical examples for the property

Value of [p
(n,J)

, p(n,J)]
`````````````````````̀
Data (n, J)

Reference target ST
S10 ∈ {4, 5, 6} S13 ∈ {6, 7, 9}

(10, (5,6)) [0.2398 , 0.7256] [0.0990 , 0.7499]

(10, (5,6,7)) [0.1306 , 0.7802] [0.0395 , 0.8481]

(10, (1,5,6,7)) [0.0040 , 0.8517] [0.0005 , 0.8755]

(10, (1,3,5,6,7)) [0.0040 , 0.9387] [0.0003 , 0.9259]

(10, N10
0 ) [0 , 1] [0 , 1]

From Table 3.1, notice that under Data (10,(1,5,6,7)) and (10,(1,3,5,6,7)), the

reference target S10 ∈ {4, 5, 6} have the same lower probability value 0.0040 which

give a numerical example of the Equality 3.4.7. One could also observe that given

10 data point, with increasing imprecise in the data, the gap between the lower and

upper probability value induced by NPI for imprecise Bernoulli data become wider

as it is stated in Inequality 3.4.12 and 3.4.13.

To understand why does this property exist, one should know how the increase

of imprecision in data affects the lower probability legitimate path counting.

Consider example J ∈ ∪
1≤i≤2

Ji and ST ∈ ∪
1≤h≤2

Rh. Recall that legitimate paths in

the lower probability are the paths of which the increment on the data tunnels covers

any subset of the inference target, legitimate paths in the example are then paths

that have to be confined in green area within each data tunnel. (See Figure 3.13)
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Figure 3.13: Graphical illustration of property in NPI for imprecise Bernoulli data

These green areas could be thought of the restrictions for the paths that legiti-

mately go from (0, 0) to (n, T ). The increment of imprecision in the data will either

expand the width of existing data tunnel or create a new data tunnel, these two re-

sults will both lead to an increment of total size of green areas within the lattice and

thus reduce the number of legitimate paths in the lower probability mass counting.

The above argument gives the reason for Inequality 3.4.12. Since increasing

imprecision in data leads to decrement in the lower probabilities of all reference

target and from the imprecise probability conjugacy property 2.1.2, one knows

p(A) = 1 − p(Ac), the upper probability value will increase as imprecision in data

increase. This gives the reason for Inequality 3.4.13.



Chapter 4

Application of NPI method in

asset trading

In this chapter, under binomial tree model, considering the financial object asset

AT defined in Chapter 2, we apply NPI to learn the information from historical

data, induce an imprecise probability space on the asset price AT (ST ) and study the

performance of two different NPI asset trading routes in a simple scenario setting.

4.1 Asset Scenario setting

Consider the scenario: one is allowed to long or short the one unit of asset at price a0

at time 0. Additionally one is allowed to invest or borrow a0 with risk free interest

rate r. Whatever position one enters, one has to keep the position for time length T

and is obligated to close all his risk position at time T , how should one, who is a NPI

imprecise probability believer, without using any of his or her capital, make one’s

decision in trading to maximize one’s capital gain in present value probabilistically

or expectationally at time T? (Assume one’s capital is able to cover any potential

loss)

In the scenario, the key points to emphasize are: fixed entering position time

point, fixed closing position time point, one single asset is available to long or short.

One is interested in the asset price AT = a0u
ST dT−ST at time T . Since AT (ST )

is a monotonically increasing and non-negative function of ST , one is able construct

49
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p
E(AT )

and p
E(AT )

by Formulas 2.2.30 and 2.2.29. Using p
E(AT )

and p
E(AT )

, one then

is able to find E(AT ) and E(AT )

A NPI believer, who prefer to use imprecise probability operator p and p could

rationally make following decision on asset trading in this scenario at time 0:

Set threshold value 0.5 < w < 1. From NPI setting, one could know 0 <

p(AT (ST ) > a0B(T )) < p(AT (ST ) > a0B(T )) < 1 if ST ( NT
0 and ST 6= ∅.

Imprecise probability asset trading route 1.1:



Borrow cash a0 and buy the asset a0 at time 0. And sell the asset at time T

return a0B(T ) to the lender. if p(AT (ST ) > a0B(T )) > w

Short the asset at for a0 current time, invest the cash a0 at risk free rate and

close the both positions at time T if p(AT (ST ) < a0B(T )) > w

No action if none of above satisfied

Motivation behind NPI imprecise probability asset trading route 1.1:

When AT (ST ) > a0B(T ), the increment AT − a0 of asset price from time 0 to

time T is greater than the interest a0× (er−1) generated at time T from borrowing

a0 at time 0. So when the lower probability of this event AT (ST ) > a0B(T ) is

greater than the threshold value w, a prudent individual using imprecise probability

will invest in the asset a0 and borrow a0, anticipating the profit AT (ST ) − a0B(T )

at time T by closing the position.

On the contrary, the event AT (ST ) < a0B(T ) indicates the increment AT −a0 of

the asset price from time 0 to time T is less than the interest a0× (er−1) generated

at time T by investing a0 in risk free rate r at time 0. If the lower probability

of event AT (ST ) < a0B(T ) is greater than the threshold value w, then one would

better off short sell the asset for a0 and invest a0 in risk free rate r, anticipating the

profit a0B(T )− AT (ST ) at time T by closing the position.
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If none of the above conditions satisfied, one would better do nothing as the

information learned from historical data is not “certain” enough for one to make a

confident trade.

One can show that only one of the actions could be taken in route 1.1: Using

inequality and conjugacy property of imprecise probability, one could know:

if p(AT (ST ) > a0B(T )) > w

then, by congugacy property

1− p(AT (ST ) < a0B(T )) > w

by imprecise probability inequality

p(AT (ST ) < a0B(T )) < p(AT (ST ) < a0B(T )) < 1− w < w

Therefore, only one action could be taken in the imprecise probability asset trading

route.

A NPI believer, who prefer to use imprecise expectation operator E and E could

rationally make following decision on asset trading in this scenario at time 0:

Imprecise expectation asset trading route 1.2:



Borrow cash a0 and buy the asset a0 at time 0. And sell the asset at time T

return a0B(T ) to the lender. if E(AT ) > a0B(T )

Short the asset at for a0 current time, invest the cash a0 at risk free rate and

close the both positions at time T if E(AT ) < a0B(T )

No action if none of above satisfied

Motivation behind NPI imprecise expectation asset trading route 1.2:

If the lower expectation of asset price AT at future time T is greater than the

value a0B(T ) received when investing a0 at risk free rate r at time 0, then the

profit generated from asset through duration T is expectationally greater than the
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interest generated from borrowing a0 at time 0 with risk free rate r. Thus one

could rationally borrow cash a0 and buy the asset a0 at time 0, expecting profit

E(AT ) − a0B(T ) at time T . By the similar logic, if E(AT ) < a0B(T ), one would

rationally short the asset and invest the cash a0 in risk free rate, expecting profit

a0B(T )− E(AT ) at time T .

It is easy to show that only one of actions could be taken in route 1.2: In the

imprecise probability framework, one has E(A) ≤ E(A) and therefore E(AT ) >

a0B(T ) and E(AT ) < a0B(T ) could not be satisfied at the same time.

4.2 Simulation of NPI asset trading routes

In this section, we use simulation to study the performance of two proposed NPI

trading routes for the asset in the above scenario setting. The goals of the simulation

are three-fold. First, to verify the predictive property of NPI imprecise probability

in asset trading. Second, to evaluate and compare the performance of different NPI

trading routes in asset trading. Third, to identify the effectiveness and efficiency of

data learning in NPI imprecise probability.

We only present simulation results with following predefined parameters valued

for r,u,d and a0. Other value of predefined parameters value are also simulated,

they all have the similar pattern.

[Predefined parameters value for r,u,d and a0]:

As stated in the assumptions, we consider the asset over short period of time so

the each time step within the short period of time is small. Thus, the discounting

rate r is set at r = 0.0007 in the simulation. Other parameters value is set as

followed, upward movement u = 1.03, downward movement d = 1/u, initial asset

price a0 = 100.

All the trading routes are simulated 100,000 times using the statistical software

R version 3.5.1.

4.2.1 Data generation process

Precise data generation process with average market condition
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For each simulation trial, the precise data are generated from the family of

Bernoulli distribution with random parameter p. To achieve this, in each simulation

trial, one firstly draws a random number p from Uniform(0.1,0.9) and then generate

n+ T data points from Bernoulli(p).

Precise data generation process with specific market condition

For all simulation trials, precise data are generated from one Bernoulli distribu-

tion. One sets a number p ∈ (0.1, 0.9) and then use this predefined p to generate

n+ T data points from Bernoulli(p) for all simulation trials.

Imprecise data generation process for average market condition

For each simulation trial, imprecise data are generated from the family of Bernoulli

distribution with random parameter p1. One draws a number p1 ∈ Uniform(0.1, 0.9)

representing the market condition and sets another number p2 ∈ (0, 1) representing

the “noise” in observation. One then generate 2 arrays n + T data points from

Bernoulli(p1) and Bernoulli(p2) respectively.

Define “:=” as imprecise data converter,
(

1
0

)
:= {1},

(
0
0

)
:= {0},

(
1
1

)
:= {0, 1} and(

0
1

)
:= {0, 1}

Imprecise data generation process for specific market condition

For each simulation trial, imprecise data are generated from one Bernoulli dis-

tribution. One sets a number p1 ∈ (0.1, 0.9) representing the market condition and

sets another number p2 ∈ (0, 1) representing the “noise” in observation. One then

generates 2 arrays of n+T data points from Bernoulli(p1) and Bernoulli(p2) respec-

tively.

Define “:=” as imprecise data converter,
(

1
0

)
:= {1},

(
0
0

)
:= {0},

(
1
1

)
:= {0, 1} and(

0
1

)
:= {0, 1}

4.2.2 Performance evaluation function fAi

The performances of NPI asset trading routes are measured by five statistics of the

present value pay-off function fAi (n, T, i) in 100000 simulations. For each simulation
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trial fAi (n, T, i) is defined as follow:

fAi (n, T, i)

=


AT (siT )B(T )−1 − a0 if choose to borrow cash and buy the asset

a0 − AT (siT )B(T )−1 if choose to short sell and invest in risk free rate

0 if no action

where the inputs:

n is the length of historical asset price data one could learn;

T is the future time that the this function is evaluate;

i ∈ (1, 100000) is the index of that particular simulation trial.

Five performance statistics of this function measure from 100000 simulations are:

Average present value payoff fAi =

∑
i

fAi

100000
Win-loss ratio RA

wl =
|{i : fAi > 0}|
|{i : fAi < 0}|

Win rate RA
wr =

|{i : fAi > 0}|
100, 000

Loss rate RA
lr =

|{i : fAi ) < 0}|
100, 000

Inaction rate RA
ir =

|{i : fAi = 0}|
100, 000

One should know the sum of win rate and loss rate is not equal to 1, as the NPI

trading routes allow “inaction” when the all the desirable events are substantially

uncertain.

4.2.3 Sample simulation trials of different asset trading routes

given precise or imprecise data

In this subsection, some simple simulation trials are provided to illustrate how each

trading route work in the simulation process.

Simulation trials 1 Underlying market condition p = 0.7, (For the investor, this

information is hidden.), one observes following precise data of a asset in past 7 time

stages.
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Time stage -7 -6 -5 -4 -3 -2 -1

Data (p = 0.7) 0 1 1 1 0 1 1

Equivalently (n, j) = (7, 5)

One needs to make a decision whether or not enter a risk position of this asset

for next 7 time stages. If one is using route 1.1 (imprecise probability trading

route) and set threshold value w = 0.6. Using the predefined parameters value,

one firstly finds out m such that A7(m) = a0B(7). m ≈ 4.3289, One then find out

m1 = dme = 5, m2 = bmc = 4 and calculate p
(7,5)

(S7 ≥ m1 = 5) = 0.5 < w and

p
(7,5)

(S7 ≤ m2 = 4) = 0.2797 < w so one will take no action in this case.

If one is using route 1.2 (imprecise expectation trading route), using the prede-

fined parameters value, one finds out E(7,5)(A7) = 105.8076 > a0B(7) = 105.022

and E(7,5)(A7) = 111.3152 > a0B(7) = 105.022. Thus, one will borrow cash a0 and

buy the asset a0 at time 0 and close the risk position at time 7.

Simulation trial 2 Underlying market condition p = 0.3, one observes following

data of a asset in past 7 time stages

Time stage -7 -6 -5 -4 -3 -2 -1

Data (p = 0.3) 0 0 1 0 0 0 1

Equivalently (n, j) = (7, 2)

One needs to decide whether or not enter a risk position of this asset for next 7

time stages. If one is using route 1.1 (imprecise probability trading route) and set

threshold value w = 0.6. Using the predefined parameters value, one firstly finds

out m such that A7(m) = a0B(7). m ≈ 4.3289. One then find out m1 = dme = 5,

m2 = bmc = 4 and calculate p
(7,2)

(S7 ≥ m1 = 5) = 0.0513 < w and p
(7,2)

(S7 ≤

m2 = 4) = 0.8569 > w. Thus one will Short the asset at for a0 current time, invest

the cash a0 at risk free rate and close the both positions at time 7 in this case.

If one is using route 1.2 (imprecise expectation trading route), using the pre-

defined parameters value, one firstly finds out E(7,2)(A7) = 90.52443 < a0B(7) =

105.022 E(7,2)(A7) = 95.41828 < a0B(7) = 105.022. Thus, one will short the asset

for a0 at time 0, invest the cash a0 at risk free rate and close the both positions at
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time 7

Simulation trial 3 Underlying market condition p1 = 0.7, and noise level p2 = 0.2,

one observes following data of a asset in past 7 time stages.

Time stage -7 -6 -5 -4 -3 -2 -1

Data (p1 = 0.7 , p2 = 0.2) 0 1 1 1 {0,1} 1 1

Equivalently [n, J ] = [7, (5, 6)]

One needs to make a decision whether or not enter a risk position of this asset

for next 7 time stages. If one is using route 1.1 (imprecise probability trading

route) and set threshold value w = 0.6. Using the predefined parameters value, one

firstly finds out m such that A7(m) = a0B(7). m ≈ 4.3289. One then find out

m1 = dme = 5, m2 = bmc = 4 and calculate p
[7,(5,6)]

(S7 ≥ m1 = 5) = 0.5 < w and

p
[7,(5,6)]

(S7 ≤ m2 = 4) = 0.0962 < w. Therefore one will take no action in this case.

If one is using route 1.2 (imprecise expectation trading route), using the prede-

fined parameters value, one firstly finds out E[7,(5,6)](A7) = 105.8076 > a0B(7) =

105.022 and E[7,(5,6)](A7) = 117.0397 > a0B(7) = 105.022. Thus, one will borrow

cash a0 and buy the asset a0 at time 0 and close the risk position at time 7.

Simulation trial 4 Underlying market condition p1 = 0.3, and noise level p2 = 0.6,

one observes following data of a asset in past 7 time stages.

Time stage -7 -6 -5 -4 -3 -2 -1

Data (p1 = 0.7 , p2 = 0.6) 0 1 0 1 {0,1} {0,1} {0,1}

Equivalently [n, J ] = [7, (2, 5)]

One needs to make a decision whether or not enter a risk position of this asset

for next 7 time stages. If one is using route 1.1 (imprecise probability route) and

set threshold value w = 0.6. Using the predefined parameters value, one firstly finds

out m such that A7(m) = a0B(7). m ≈ 4.3289. One then find out m1 = dme = 5,

m2 = bmc = 4 and calculate p
[7,(2,5)]

(S7 ≥ m1 = 5) = 0.0513 < w and p
[7,(2,5)]

(S7 ≤

m2 = 4) = 0.2797 < w. Consequently, one will take no action in this case.
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If one is using route 1.2 (imprecise probability route), using the predefined pa-

rameters value, one firstly finds out E[7,(2,5)](A7) = 90.52443 < a0B(7) = 105.022

E[7,(2,5)](A7) = 111.3152 > a0B(7) = 105.022. Thus, one will take no action in this

case.

4.2.4 Performance of NPI asset trading routes under aver-

age market condition given precise data available

In this section, under average market condition, given precise data available, the

performance of NPI asset trading routes are evaluated and discussed.

Figure 4.1 shows that for different combinations of precise historical data point

n and future length T , both routes 1.1 and 1.2 yield positive average present value

payoff on average market condition. It could be noticed that, with small amounts

of historical data n available, route 1.2 performs better in term of average present

value payoff. The reason for this is that route 1.1 is a more conservative trading

route which tends to avoid making trading when information learnt from data is not

very sufficient. This is further confirmed in Figure 4.2.

Figure 4.2 demonstrates the performance of decision routes 1.1 and 1.2 in terms

of five performance index fAi , RA
wl, R

A
wr, R

A
lr and RA

ir at time T = 100 under average

market condition.

It could be observed from all indexes that both NPI based asset trading routes

have very quick learning speed. The average present value payoff fAi from both

routes increases sharply when a small number of data become available. Moreover,

all the performance indexes for both trading routes become better when more data is

presented and they stabilized after 20 data point are available. Overall, in terms of

long run payoff fAi , route 1.2 slightly outperforms route 1.1. However, as previously

mentioned, route 1.1 is a more conservative trading route which tends to avoid

making trading when information learned from data is not very sufficient. This

indeed is the case, as one could observe from RA
ir plot in Figure 4.2. Route 1.1

overall has higher inaction rate then route 1.2, especially in the case only small

amount of data is present. Also lower loss rate RA
lr in route 1.1 could be observed

from Figure 4.2. This is as expected since route 1.2 prioritize the expectation of
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Figure 4.1: APVP of routes 1.1 and 1.2 under average market condition given precise
data (APVP stands for average present value payoff in all following figures).
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Figure 4.2: Performance comparison of routes 1.1 and 1.2 at T = 100 under average
market condition given precise data.
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profit while route 1.1 prioritize achieve profit with a certain probability threshold.

With adjustment of threshold parameter w, route 1.1 is able to have better control

in win loss ratio RA
wl and loss ratio RA

lr than route 1.2. At threshold parameter

w = 0.7, route 1.1 could achieve loss rate less than 0.1 and win loss ratio greater

than 20 when n ≥ 50 data points are available. Although route 1.1 has lower win

rate generally, one should attribute this to its higher inaction rate RA
lr as it try to

avoid taking action when the event AT (ST ) > a0B(T ) or AT (ST ) < a0B(T ) is not

certain up to the threshold value w. Albeit route 1.1 have better performance in

win loss ratio RA
wl and loss ratio RA

lr, one should not neglect that performance of

route 1.2 in those indexes are still very satisfactory.

Overall, given precise data, under average market condition, both trading routes

yield positive average present value payoff and have good performance in RA
wr, R

A
wl

and RA
lr. Both trading routes are able to effectively learn information from the

historical data and execute correct action accordingly. When more data become

available, the performances of both trading routes become better. By avoiding tak-

ing action when the desired event is not certain up to a level, route 1.1 provide good

control on the loss rate and win-loss ratio when small amount of data is available.

In contrast, route 1.2 has higher present value payoff in long run with less attention

in the risk control.

4.2.5 Performance of NPI asset trading routes under differ-

ent market conditions given precise data available

The previous section showed that given precise data, NPI asset trading routes are

well performed under average market condition. This section investigates the next

level of detail by evaluating the performance under a specific market condition.
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Figure 4.3: Under different market condition, APVP of trading route 1.1 with thresh-
old value w = 0.6.
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Figure 4.4: Under different market condition, APVP of trading route 1.2.

From Figure 4.3 and 4.4, it could be concluded that both trading routes readily
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recognize the market condition when a few data become available and have good

performance when the market is relatively one-sided p ∈ (0.1, 0.4) or p ∈ (0.6.0.9).

Especially one should notice that route 1.1 preserves the positivity of average present

value payoff throughout all different market condition due to its risk control nature.

On the other hands, route 1.2 appears to has negative average present value payoff

under market condition p ∈ (0.2, 0.5) when the number of data is insufficient. Nev-

ertheless, it is able to rectify its trading strategy when more data become available

which results in positivity on the rest of the area of present value payoff surface.

The maximum present value payoff could be achieved by short selling is less than

the initial asset price a0 = 100. When the market is in recession p ∈ (0.1, 0.4), Both

trading routes could recognize the market condition from the data and did correct

short selling in most of the case. From Figure 4.3 and 4.4, one could observed that

with 40 data point available, under market condition p ∈ (0.1, 0.4), both trading

strategy could achieve approximately 20% of average present value payoff after time

T = 80.

When the market is in upswing p ∈ (0.6, 0.9), both trading routes are able

to recognize the market condition when small of data n ≥ 15 are available. The

second action, borrowing cash and buying the asset, is executed frequently. The

best performances of the average present value payoff fAi for both trading routes

occur when the market condition is p = 0.9

When the market condition is neutral p = 0.5, the correct trading action is

taking no action as the market has no obvious trend. Both trading routes are able

to execute correct action in most the case under this situation, resulting a flat surface

of fAi in Figure 4.3 and 4.4 when p = 0.5.

To see more detail and have a more direct comparison of trading routes’ per-

formances, Figure 4.5-4.9 are plotted, which present all the performance indexes at

time T = 100 under different market conditions for both trading routes.
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Figure 4.5: Under different market condition, APVP of trading routes 1.1 and 1.2.
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Figure 4.6: Under different market condition, WR of trading routes 1.1 and 1.2 (WR
stands for win rate in all following figures).
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Figure 4.7: Under different market condition, LR of trading routes 1.1 and 1.2 (LR
stands for loss rate in all following figures).
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Figure 4.8: Under different market condition, WLR of trading routes 1.1 and 1.2
(WLR stands for win-loss ratio in all following figures).
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Figure 4.9: Under different market condition, IR of trading routes 1.1 and 1.2 (IR
stands for inaction rate in all following figures).

From Figure 4.5, it could be confirmed again both trading routes are able to

execute correct action when the market condition is relatively one-sided. As we

expected previously, both trading routes avoid taking unreasonable actions when

market condition is neutral, indicated by the higher inaction rate when market

condition is p ∈ (0.4, 0.6) in Figure 4.9. Moreover, from Figure 4.5, one could know

route 1.2 indeed prioritizes on maximizing the present value payoff in the long run. It

generally has higher fAi than route 1.1 under different market conditions. However,

from Figure 4.7, although both trading routes have similar loss rate when market

condition is favour for buying the asset, route 1.1 actually has better risk control
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than route 1.2 in loss rate when the market condition is in favor of short selling the

asset or has no trend p ∈ (0.1, 0.5). Also, with a higher value of threshold value

w set in route 1.1, route 1.1 tends to have higher inaction rate and higher win-loss

ratio throughout all different market conditions, indicated by Figure 4.8 and Figure

4.9

4.2.6 Performance of NPI asset trading routes under aver-

age market condition given imprecise data available

In this section, given imprecise data, under average market condition, the perfor-

mances of both NPI asset trading routes are evaluated.

From Figure 4.10 and Figure 4.11, it could be observed that under the average

market condition, both route 1.1 and route 1.2 preserve positivity on average present

value payoff regardless what noise level contains in the data. With noise level p2 =

0.1, the positive average present value payoff surface of both trading routes resemble

the corresponding surface in Figure 4.1 which has no noise in data. As the noise

level increase, the positive average present value payoff surface from both trading

routes are flattened due to more inactions are taken in the trading. This indicates

both NPI asset trading routes effectively recognize the noise level in the data and

are able to adjust its trading action correspondingly.

Figures 4.12-4.15 give more detail of the performances of both trading routes by

plotting fAi , RA
wr, R

A
lr and RA

ir at time T = 100 with different number of data point n

available. Win-loss ratio RA
wl is not presented in this section, because as noise level

gradually increases, the inaction rate RA
ir increases to nearly 1 and loss rate RA

lr drop

to nearly 0, which eventually makes Win-loss ratio RA
wl “blow up”.

As the noise level increase, the information contained in the data becomes in-

sufficient for one to make a sensible decision and both trading routes heuristically

choose to take no action. This can be seen in Figure 4.15. The inaction rate RA
ir of

both trading routes increases dramatically as the noise level p2 increases. At noise

level p2 = 0.5, the inaction rates of both trading routes are asymptotic to 1 after 50

data points become available.

With a relatively lower level of noise presented p2 ∈ (0.1, 0.3), both trading
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Figure 4.10: With average market condition, APVP of trading route 1.1 with thresh-
old value w = 0.6 under different noise levels p2.
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Figure 4.11: With average market condition, APVP of trading route 1.2 under
different noise levels p2.
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Figure 4.12: With average market condition, at time T = 100, APVP of both trading
routes 1.1 and 1.2 under different noise levels p2.
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Figure 4.13: With average market condition, at time T = 100, WR of both trading
routes 1.1 and 1.2 under different noise levels p2.
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Figure 4.14: With average market condition, at time T = 100, LR of both trading
routes 1.1 and 1.2 under different noise levels p2.
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Figure 4.15: With average market condition, at time T = 100, IR of both trading
routes 1.1 and 1.2 under different noise levels p2.
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routes are still able to extract useful information from the data. Therefore, as the

number of low level noise data increase, both trading routes gradually recognize

underlying distribution and start to take more actions and the performances of all

index resemble the corresponding precise case in Section 4.2.4.

In contrast, when a higher level of noise presented in the data p2 ∈ (0.4, 0.9),

given sufficient data are available (n > 20), both trading routes realized the infor-

mation contained in the data is too ambiguous and avoid to take action in most

cases. (See Figure 4.15)

It could be seen from Figures 4.12-4.14 that both trading routes still maintain

their primary objective respectively under low noise affection. Namely, route 1.1

emphasize risk control on loss rate and win-loss ratio while route 1.2 focuses on

achieving maximum average present value payoff.

4.2.7 Performance of NPI asset trading routes different mar-

ket under different market conditions given imprecise

data available

In this section, given imprecise data, the performance of NPI asset trading routes is

further evaluated different market under different market conditions.

It is observed from simulations that both NPI trading routes, under all market

condition p1 ∈ (0.1, 0.9), are able to effectively and efficiently recognize the noise

from the imprecise data and gradually take less trading action as the noise level

increase. When low noise level is presented p2 ∈ (0.1, 0.4), both trading routes are

able to recognize the underlying market condition and execute correct action ac-

cordingly. Since both trading routes share similar patterns of decaying phenomenon

on the average present value fAi surface, and one complete trading route example

requires nine pages of space, for the sake of brevity, we only present one complete ex-

ample of average present value fAi surface for route 1.1 with threshold value w = 0.6

in the Appendix A. (See Figures A.1-A.9)

Both route 1.1 and route 1.2 maintain their respective primary objectives in

trading under all market conditions when only low noise level is presented. As a
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example, the performance indexes of fAi , RA
wr, R

A
lr and RA

ir under market condition

p1 = 0.9 at time T = 100 for both trading routes is demonstrated below. (See Figures

4.16-4.19). The win-loss ratio profile is omitted for the same reason mentioned in

previous section.
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Figure 4.16: APVP of routes 1.1 and 1.2 at T = 100 under market condition p1 = 0.9
and different noise levels p2.
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Figure 4.17: WR of routes 1.1 and 1.2 at T = 100 under market condition p1 = 0.9
and different noise levels p2.
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Figure 4.18: LR of routes 1.1 and 1.2 at T = 100 under market condition p1 = 0.9
and different noise levels p2.
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Figure 4.19: IR of routes 1.1 and 1.2 at T = 100 under market condition p1 = 0.9
and different noise levels p2.

From Figure 4.16, under market condition p1 = 0.9, it could be found that

route 1.2 is dominating in term of fAi regardless what noise level is presented in

the data which is as expected as route 1.2 emphasize on achieve maximum present

value payoff in the long run. Although from Figure 4.18, one may argue route 1.1

has worse performance in loss rate when the noise level is low, one should notice

that the under market condition p1 = 0.9, the magnitude of the loss ratio difference

between route 1.1 and route 1.2 is less than 0.008 which is extremely small. And it is

observed from other simulation results for market p1 ∈ (0.1, 0.5) under different noise

levels, route 1.1 is better at risk control in loss rate RA
lr than route 1.2. Therefore, in
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essence, the risk control effort of route 1.1 is significant when market has no trend

or in favor of short selling the asset and less noticeable when the market is in favor

of buying the asset. Overall, from Figures 4.16-4.19, one could notice that, as noise

level increase, both trading routes’ inaction rate RA
ir increase, resulting in similar

trading outcomes in the high level noise region.

4.3 Overall review of NPI asset trading simula-

tion

From Section 4.2, one could reach the following conclusion:

The proposed NPI trading route 1.1 and route 1.2 have decent performance under

all market condition and different noise levels.

Both trading routes are able extract correct underlying information from the

data effectively and efficiently and take corresponding correct action different market

under different market conditions. The data learning process also has moderate noise

resistance when low noise level is presented. When the data is affected by high level

of noise, both trading routes are able to readily recognize and stop taking any non

sensible action.

Under no noise or low noise condition, given sufficient data, throughout all dif-

ferent market conditions, route 1.1 has better risk control on loss rate while route

1.2 is able to achieve higher average present value payoff.



Chapter 5

Application of NPI method in

European option trading

In this chapter, under binomial tree model, considering the financial object European

call option Λc(AT , K) and European put option Λp(AT , K) defined in Chapter 2,

we apply NPI to learn the information from historical data and induced imprecise

probability space on the underlying asset price AT (ST ). Based on the induce NPI

imprecise probability space and using CRR non-arbitrage price as current market,

two NPI European call option trading routes and two NPI European put option

trading routes are proposed. Simulations are subsequently conducted to evaluate

the trading routes’ performance. One should notice the crucial point in this chapter

is that we admit the non arbitrage price derived by the CRR model. The non

arbitrage price is used as the current market price in the simulations. Also, the

formulation of all trading routes in this chapter involves using the non arbitrage

price as current market price and NPI imprecise probability or expectation. This is

an important difference from He et al.’s work [27,28] where they use NPI expectation

as an alternative option pricing model and investigate the trading result between

CCR believer and NPI believer under different market conditions.

82
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5.1 NPI method in European call option trading

In this section, we apply NPI method in European call option trading. A call

option trading scenario is firstly specified. Under this scenario, two NPI call option

trading routes are proposed. Subsequently, simulations are conducted to evaluate the

performance of the proposed European call option trading routes by five performance

indexes.

5.1.1 Call option trading Scenario setting

Consider the scenario: one is allowed to long or short the one unit of call option

with strike price K and maturity date T at price ΛQ
c (a0, K) in time 0. Also, one

is allowed to invest or borrow ΛQ
c (a0, K) with risk free interest rate r. Whatever

position one enters, one has to keep the position for time length T and is obligated

to close all risk position at time T (One is allowed to buy, sell or short sell the asset

at price AT for closing the risk position in time T ). How should one, who is a NPI

imprecise probability believer, without using any of his or her capital, make one’s

decision in trading to maximize one’s capital gain in present value probabilistically

or expectationally at time T? (Assume one’s capital is able to cover any potential

loss)?

In the scenario, the key points to emphasize are: fixed entering position time

point, fixed closing position time point, one single call is available to long or short.

One is interested in the call option payoff Λc(AT , K) = (AT (ST )−K)+ at time

T . Since Λc(AT , K) = (AT − K)+ is monotonically increasing function of AT and

AT (·) is monotonically increasing function ST . Thus Λc(AT (ST ), K) is monoton-

ically increasing function of ST . One therefore can compute E(Λc(AT , K)) and

E(Λc(AT , K)) by construct p
Λc(AT ,K)

(·),and pΛc(AT ,K)(·) using Formulas 2.2.29 and

2.2.30.

A NPI believer, who prefer to use imprecise probability operator p and p could

use following European call option trading route in this scenario at time 0:

Set threshold value 0.5 < w < 1. From NPI setting, one has 0 < p((AT (ST ) −

K)+ > B(T )ΛQ
c (a0, K)) < p((AT (ST )−K)+ > B(T )ΛQ

c (a0, K)) < 1 if ST ( NT
0 and
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ST 6= ∅.

Imprecise probability European call trading route 2.1:



Borrow cash ΛQ
c (a0, K) and buy the call option at time 0,

Exercise the option to buy the asset with price K at time T and sell the asset

at market price AT if AT > K, return cash ΛQ
c (a0, K)B(T ) to the lender at time T

if: p[(AT (ST )−K)+ > B(T )ΛQ
c (a0, K)] > w

Short the call option at time 0 for ΛQ
c (a0, K), invest ΛQ

c (a0, K) for risk free rate r

close all the position at time T if p[(AT (ST )−K)+ < B(T )ΛQ
c (a0, K)] > w

No action if none of above satisfied

Motivation behind NPI imprecise probability European call option trading route

2.1

Consider the event (AT (ST )−K)+ > B(T )ΛQ
c (a0, K) that the payoff of the call

option at time T is greater than the interest B(T )ΛQ
c (a0, K) generated at time T

by borrowing ΛQ
c (a0, K) at risk free rate r at time 0. If the lower probability of this

event is greater than the threshold value w (w > 0.5), one would prefer to buy this

call option and expect to earn more than B(T )ΛQ
c (a0, K) from the call option payoff

in future time T .

On the contrary, consider the event (AT (ST ) −K)+ < B(T )ΛQ
c (a0, K) that the

payoff the call option at future time T is less than interest generated by investing

ΛQ
c (a0, K) at time 0. If the lower probability of this event is greater than threshold

value w (w > 0.5), then one would expect the payoff of call option more likely to be

less than the interest generated by investing ΛQ
c (a0, K) at time 0. Thus one would

prefer to short sell the call option and invest the amount ΛQ
c (a0, K) with risk free

rate r.

If none of above conditions are satisfied, one would better off take no action as

the lower probability of the desirable event is not high enough for one to make a
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confident decision.

One can show that only one of actions could be taken in Route 2.1: Using

inequality and conjugacy property of imprecise probability, one could know:

if p[(AT (ST )−K)+ > B(T )ΛQ
c (a0, K)] > w

then, by congugacy property

1− p[(AT (ST )−K)+ < B(T )ΛQ
c (a0, K)] > w

by imprecise probability inequality

p[(AT (ST )−K)+ < B(T )ΛQ
c (a0, K)] < p[(AT (ST )−K)+ < B(T )ΛQ

c (a0, K)] < 1− w < w

Thus, only one action could be taken in the imprecise probability European call

option trading route.

Under the presetting scenario, a NPI believer, who prefer to use imprecise ex-

pectation operator E and E could use following European call trading route at time

0:

Imprecise expectation European call trading route 2.2:



Borrow cash ΛQ
c (a0, K) and buy the call option at time 0,

Exercise the option to buy the asset with price K at time T and sell the asset

at market price AT if AT > K, return cash ΛQ
c (a0, K)B(T ) to the lender at time T

if: E[(AT −K)+] > B(T )ΛQ
c (a0, K)

Short the call option at time 0 for ΛQ
c (a0, K), invest ΛQ

c (a0, K) for risk free rate r

close all the position at time T if E[(AT −K)+] < B(T )ΛQ
c (a0, K)

No action if none of above satisfied

Motivation behind NPI imprecise expectation call option trading route 2.2

When the lower expectation of call option payoff E[(AT −K)+] at future time T is

greater than the return B(T )ΛQ
c (a0, K) generated at time T by borrowing ΛQ

c (a0, K)

at time 0 with risk free interest rate r, one would prefer to borrowing ΛQ
c (a0, K)
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at time 0 and buy the call option and expect to receive at least the amount of

E[(AT −K)+]−B(T )ΛQ
c (a0, K) at time T .

If the upper expectation of call option payoff E[(AT −K)+] at future time T is

less than the current call option non-arbitrage price ΛQ
c (a0, K), one would rationally

choose to short the call option and invest the money received into risk free rate r

at time 0, expecting receive at least B(T )ΛQ
c (a0, K) − E[(AT −K)+] at time T by

close all the position.

It is also easy to show that only one of actions could be taken in Route 2.2: In

the imprecise probability framework, one has E[(AT −K)+] ≤ E[(AT −K)+] and

therefore E[(AT − K)+] > B(T )ΛQ
c (a0, K) and E[(AT − K)+] < B(T )ΛQ

c (a0, K)

could not be satisfied at the same time.

5.1.2 Simulation of call option trading in NPI Bernoulli

model

In this section, we use simulation to study the performance of two proposed NPI

European call option trading routes in the prescribed scenario setting.

We only present simulation results with following valued predefined parameters

r,u,d and a0, K. Other values of predefined parameters value are also simulated;

they all have similar patterns.

[Predefined parameters value for r, u, d, a0 and K] We use the same predefined

parameter value for r, u, d, a0 as in the asset trading chapter and call option strike

price K is set at K = 103

All the trading routes are simulated 100,000 times using the statistical software

R version 3.5.1. The data generating process of the underlying asset in this section

is the same as the previous chapter and thus will not be repeatedly stated here.

Performance evaluation function fCi

The performances of NPI European call trading routes are measured by five statistics

of the present value pay-off function fCi (n, T, i) in 100000 simulations. fCi (n, T, i) is
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defined as follow:

fCi (n, T, i)

=


(AT (ST )−K)+B(T )−1 − ΛQ

c (a0, K) if first action of the trading route is taken

ΛQ
c (a0, K)− (AT (ST )−K)+B(T )−1 if second action of the trading route is taken

0 if no action

where the inputs:

n is the length of historical asset price data one could learn;

T is the future time that the this function is evaluate;

i ∈ (1, 100000) is the index of that particular simulation trial.

Five performance statistics of this function measure from 100000 simulations are:

Average present value payoff fCi =

∑
i

fCi

100000
Win-loss ratio RC

wl =
|{i : fCi > 0}|
|{i : fCi < 0}|

Win rate RC
wr =

|{i : fCi > 0}|
100, 000

Loss rate RC
lr =

|{i : fCi ) < 0}|
100, 000

Inaction rate RC
ir =

|{i : fCi = 0}|
100, 000

Sample simulation trials of different call option trading routes given pre-

cise or imprecise data

Several simulation trials are provided to illustrate how each call option trading route

work in the simulation process.

Simulation trial 1 Underlying market condition p = 0.2 (For the investor, this

information is hidden), one observes following precise data of the underlying asset

price in past 7 time stages

Time stage -7 -6 -5 -4 -3 -2 -1

Data (p = 0.2) 0 0 0 0 1 1 0

Equivalently (n, j) = (7, 2)

With predefined parameters value, one needs to decide whether or not enter a

risk position of a call option of which the mature time is at time T = 7. By CRR
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pricing model, q = er−d
u−d = 0.5044 and current market price ΛQ

c (a0, K) is

ΛQ
c (a0, K) = B(T )−1

T∑
ST =0

(
T

ST

)
(A0u

ST dT−ST −K)+qST (1− q)T−ST

= B(7)−1

7∑
ST =0

(
7

ST

)
(100 ∗ 1.03ST (

1

1.03
)
7−ST

− 103)+qST (1− q)7−ST

= 2.0094

If one uses route 2.1 (imprecise probability trading route) and set threshold

value w = 0.7. One firstly finds out m such that (A7(m)−K)+ = B(T )ΛQ
c (a0, K).

m ≈ 4.319, One then find out m1 = dme = 5, m2 = bmc = 4 and calculate

p
(7,2)

(S7 ≥ m1) = 0.0512 < w and p
(7,2)

(S7 ≤ m2) = 0.8569 > w, thus one will take

second action of route 2.1 in this case, namely, one will short the call option at time

0 for 2.0094, invest 2.0094 for risk free rate 0.003 and close all the position at time

7

If one uses route 2.2 (imprecise expectation trading route), one will find out

E(7,2)[(AT − K)+] = 0.4350 < ΛQ
c (a0, K)B(7) = 1.9618 and E(7,2)(A7) = 1.3127 <

ΛQ
c (a0, K)B(7) = 1.9618. Thus, one will take second action of route 2.2 and execute

the same strategy as one uses route 2.1.

Simulation trial 2 Underlying market condition p = 0.5, one observes following

data of the underlying asset price in past 7 time stages

Time stage -7 -6 -5 -4 -3 -2 -1

Data (p = 0.5) 0 1 0 0 1 0 1

Equivalently (n, j) = (7, 3)

One needs to decide whether or not enter a risk position of a call option which

expired at future 7 time units. If one uses route 2.1 (imprecise probability trading

route) and set threshold value w = 0.6. With the predefined parameters value,

current market price ΛQ
c (a0, K) is still 2.0094. The value m such that (A7(m) −

K)+ = B(T )ΛQ
c (a0, K) is still m ≈ 4.319. One then still find out m1 = dme = 5,

m2 = bmc = 4 calculate p
(7,3)

(S7 ≥ m1) = 0.1430 < w and p
(7,3)

(S7 ≤ m2) =

0.7040 > w, therefore one uses route 2.1 will take the second action.
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If one uses route 2.2 (imprecise expectation trading route), one will find out

E(7,3)[(AT − K)+] = 1.312 < ΛQ
c (a0, K)B(7) = 1.9618 and E(7,3)(A7) = 2.987 >

ΛQ
c (a0, K)B(7) = 1.9618. Thus, one would take no action if one uses route 2.2 in

this case.

Simulation trial 3 Underlying market condition p1 = 0.2, and noise level p2 = 0.2,

one observes following data of the underlying asset price in past 7 time stages.

Time stage -7 -6 -5 -4 -3 -2 -1

Data (p1 = 0.2 , p2 = 0.2) 0 0 {0,1} 0 {0,1} 0 0

Equivalently [n, J ] = [7, (0, 2)]

One again needs to make decision whether or not enter a risk position of the option.

If one uses route 2.1 (imprecise probability trading route) and set threshold value

w = 0.65. The value m such that (A7(m)−K)+ = B(T )ΛQ
c (a0, K) is still m ≈ 4.319.

Set m1 = dme = 5, m2 = bmc = 4 and calculate p
[7,(0,2)]

(S7 ≥ 5) = 0 < w and

p
[7,(0,2)]

(S7 ≤ 4) = 0.8569 > w so one will take second action of route 2.1 in this

case.

If one uses route 2.2 (imprecise expectation trading route), one will find out

E[7,(0,2)][(AT − K)+] = 0 < ΛQ
c (a0, K)B(7) = 1.9618 and E(7,(0,2))(A7) = 1.312 <

ΛQ
c (a0, K)B(7) = 1.9618. Thus, one will take second action of route 2.2 in this case.

Simulation trial 4 Underlying market condition p1 = 0.7, and noise level p2 = 0.6,

one observes following data of the underlying asset price in past 7 time stages.

Time stage -7 -6 -5 -4 -3 -2 -1

Data (p1 = 0.7 , p2 = 0.6) 0 {0,1} {0,1} 1 1 {0,1} 0

Equivalently [n, J ] = [7, (2, 5)]

With the same situation, one uses route 2.1 (imprecise probability route) and set

threshold value w = 0.6. One calculate p
[7,(2,5)]

(S7 ≥ 5) = 0.0512 < w and

p
[7,(2,5)]

(S7 ≤ 4) = 0.2797 < w so one will take no action in this case.

If one uses route 2.2 (imprecise expectation trading route), one will find out

E[7,(0,2)][(AT −K)+] = 0.4351 < ΛQ
c (a0, K)B(7) = 1.9618 and E(7,(0,2))[(AT −K)+] =
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9.4747 > ΛQ
c (a0, K)B(7) = 1.9618. Thus, one who use route 2.2 will take no action

in this case.

Performance of NPI call option trading routes under average market

condition given precise data available

Under the average market condition, given precise data available, the performances

of NPI European call option trading routes 2.1 and 2.2 are assessed and discussed

below.

Figure 5.1 plots the average present value payoff surface fCi of trading routes 2.1

and 2.2 for a call option with presetting parameter values and different maturity

data T ∈ (1, 100), given n ∈ (1, 100) units of historical data available. One could

confirm that for all size historical data n ∈ (1, 100), both from Figure 5.1 that

both routes 2.1 and 2.2 produce positive present value payoff in the long run under

average market condition. The surface shares a similar pattern to the corresponding

surface in asset trading chapter. Both trading routes 2.1 and 2.2 have a fast speed

of learning in data. At present of n = 15 historical data, both trading routes have

the excellent trading results for all call option expired in future 1 to 100 time units.

One may notice with a small amount of data available, the average present

value payment surface has a “fan” shape in route 2.1 while route 2.2 does not have

this phenomenon. The reason for this is similar to the corresponding case in asset

trading chapter. Route 2.1 is an imprecise probability trading routes which aim to

minimize loss rate and avoid trading in the uncertainty situation while route 2.2 is

an imprecise expectation trading routes which aim to achieve higher present value

payoff in the long run. This can be further confirmed in Figure 5.2.

Figure 5.2 presents the performances of fCi ,RC
wl,R

C
wr, R

C
lr, and RC

ir of both trading

routes for call option expired in future 100 time units. It could be observed that

route 2.2 generally have greater average present value payoff for different size of

historical data available. However, route 2.2 has worse loss rate RC
lr and win loss

ratio RC
wl than route 2.1. Especially in the case where a small amount of data is

presented, the loss rate RC
lr difference between route 2.1 and route 2.2 is significantly

higher, with loss rate RC
lr of route 2.2 being around 0.3. The reason for this is that
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route 2.1 tends to avoid making trading when the number of data is insufficient to

extract enough information about the underlying distribution. (indicated by high

inaction rate RC
ir in Figure 5.2 when small of data is available). In addition, with

adjustment of threshold value w, route 2.1 also have better control in loss rate RC
lr

and win-loss ratio RC
wl.

Overall, given precise data, under the average market condition, both proposed

European call option trading routes are able to yield positive average present value

payoff and have good performance in RA
wr, R

A
wl and RA

lr. Route 2.2 has better perfor-

mance in terms of average present value payoff, while route 2.1 have better control

in loss rate and win-loss ratio.
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Figure 5.1: APVP of routes 2.1 and 2.2 under average market condition given precise
data.
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Figure 5.2: Performance comparison of routes 2.1 and 2.2 for a call option expired
at time T = 100 under average market condition given precise data.

Performance of NPI call option trading routes under different market

conditions given precise data available

Given precise data, under a specific market condition, the performance of proposed

NPI European call option trading routes are further evaluated below.
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Figure 5.3: Under different market conditions, APVP of trading route 2.1 with
threshold value w = 0.6.
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Figure 5.4: Under different market conditions, APVP of trading route 2.2.

Given precise data, Figure 5.3 and Figure 5.4 demonstrate the average present
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value payoff of routes 2.1 and route 2.2 under different market conditions.

It could be observed both trading routes 2.1 and 2.2 are well performed under

extreme market condition p ∈ (0.1, 0.3) ∪ (0.7, 0.9), indicating both routes have the

ability to recognize the underlying market condition. The simulation used the CCR

European call option non-arbitrage price as market price. For an European call

option which expired at time T = 100 with presetting parameter values, the non-

arbitrage price ΛQ
c (a0, K) is 13.631. Thus the maximum present value payment of

call option expired in time T ∈ (1, 100) could be achieved by shorting sell is less than

13.631. When the market is unfavorable for the underlying asset price p ∈ (0.1, 0.3),

both trading routes most of time are able to correctly execute the second action

of the trading routes, entering a short position of the call option. This results in

average present value payoff ranging from 0 to 13.631 given different size of data

available. In contrast, when the market is favorable for the underlying asset price

p ∈ (0.7, 0.9), both trading routes are able to correctly execute the first action,

entering the long position of the call option.

It should be noticed that route 2.1 is better at avoiding making losses in trading.

One could see that both trading routes have the worst performance in fCi when the

market condition for the underlying asset price is relatively neutral p ∈ (0.4, 0.6).

In this case, making trading is more or less like a gamble. Route 2.1 is better at

avoiding taking action in those situations and maintain positive fCi through those

market conditions whereas route 2.2 are less prone to avoid trading in this situation,

resulting some of negativity in fCi when a small amount of data is available.
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Figure 5.5: Under different market conditions, APVP of trading routes 2.1 and 2.2
for call option expired at time T = 100.
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Figure 5.6: Under different market conditions, WR of trading routes 2.1 and 2.2 for
call option expired at time T = 100.
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Figure 5.7: Under different market conditions, LR of trading routes 2.1 and 2.2 for
call option expired at time T = 100.
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Figure 5.8: Under different market conditions, WLR of trading routes 2.1 and 2.2
for call option expired at time T = 100.
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Figure 5.9: Under different market conditions, IR of trading routes 2.1 and 2.2 for
call option expired at time T = 100.

In order to have a more detail examination of trading routes’ performance, the

performances index fCi , RC
wr, R

C
lr, R

C
ir for a call option expired at time T = 100

under different market conditions p of both trading routes are plotted in Figures

5.5-5.9.

From Figure 5.9, one could see that both trading routes indeed avoid make

trading under neutral market condition p ∈ (0.4, 0.6), indicated by higher inaction

rate in the figure. Moreover, route 2.1 has strong resistance in making trading than

route 2.2 in those case, which results in lower loss rate RC
lr in Figure 5.7.

Overall, route 2.1 have a better win-loss ratio in most market condition markets.
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Route 2.2, on the other hand, although underperformed in RC
lr, R

C
wl, given enough

data is available, it generally has higher fCi when market condition is two-sided.

(See Figure 5.5)

Performance of NPI call option trading routes under average market

condition given imprecise data available

Under the average market condition, subject to the different noise levels, the per-

formances of NPI European call option trading routes are evaluated below.
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Figure 5.10: With average market condition, APVP of trading route 2.1 with thresh-
old value w = 0.6 under different noise levels p2.
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Figure 5.11: With average market condition, APVP of trading route 2.2 under
different noise levels p2.

Given n units data points, the average present value payoff fCi of route 2.1 with
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threshold value w = 0.6 and route 2.2 for different call options expired in 1 to 100

units of future time is plotted in Figures 5.10 and 5.11 respectively.

It could be noticed that with noise level increase in data, the fCi surfaces of

both trading routes 2.1 and route 2.2 are decaying. This implies that both routes

2.1 and route 2.2 are able to recognize the noise level in the data. Since route 2.1

is a probability trading route which is more conservative and emphasizes more on

the risk control, its speed of decaying in fCi is much quicker than route 2.2. This

indicates that as the noise level increase, route 2.1 tends to stay more frequent in

inaction than route 2.2. Nevertheless, under the average market condition, regardless

of what noise level appears, both trading routes are able to yield positive average

present payoff for all different combinations of the number of data points available

and option expiration date. When the noise level is low, both trading routes 2.1 and

route 2.2 are able to extract the correct information for the data and execute the

correct action accordingly, resulting in similar shapes of surfaces fCi in the precise

data case. (See Figure 5.1)

In order to have a more direct performance comparison of trading route 2.1 and

route 2.2, fCi , RC
wr, R

C
lr, R

C
ir for a call option expired at time T = 100 of trading

route 2.1 and route 2.2 are plotted against each other in Figures 5.12-5.15. Since

as noise level increases, both trading routes 2.1 and 2.2 increase their frequency of

inaction and have very low loss rate. Thus win-loss ratio RC
wr is not presented.

As one has expected, the inaction rate RC
ir in Figure 5.15 surged as noise level

increase which confirms both trading routes 2.1 and 2.2 are able to recognize the

noise level and stop making non sensible trading in the ambiguous situations. When

noise level p2 ≥ 0.5, after sufficient enough data is gathered (n > 62), both trading

routes stop doing any trading.

Yet when the noise level is relatively low p2 ∈ (0.1, 0.3), the information contained

in the data is still clear. After a certain amount of data gathered, both trading routes

are able to learn useful information about the underlying market condition and thus

maintain moderate trading rate. It could be observed from Figure 5.14 and Figure

5.15 that route 2.1 has better performance in avoiding making losses in trading. In

contrast, although route 2.2 is a more risky trading route, it, however, has higher
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Figure 5.12: With average market condition, APVP of both trading routes 2.1 and
2.2 under different noise levels p2 for a call option expired data at T = 100.
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Figure 5.13: With average market condition, WR of both trading routes 2.1 and 2.2
under different noise levels p2 for a call option expired data at T = 100.
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Figure 5.14: With average market condition, LR of both trading routes 2.1 and 2.2
under different noise levels p2 for a call option expired data at T = 100.
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Figure 5.15: With average market condition, IR of both trading routes 2.1 and 2.2
under different noise levels p2 for a call option expired data at T = 100.
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present value payoff in the long run. (See Figure 5.12)

Performance of NPI call option trading routes under different market

conditions given imprecise data available

Subject to the different noise levels in data, the performance of NPI European call

option trading routes under different market conditions are examined below.

It is observed from simulations that both NPI call option trading routes effec-

tively and efficiently recognize the noise from the imprecise data and gradually take

less trading action as the noise level increase. Since both NPI call trading routes

have similar patterns of decaying phenomenon on the average present value surface

fCi , and one complete example require nine pages of space, for the sake of brevity,

we only present one complete example average present value fCi surface for route

2.1 with threshold value w = 0.6 in the Appendix B. (See Figure B.1-B.9)

To demonstrate the difference of reaction between route 2.1 and route 2.2 under

different noise levels in a specific market condition, the fCi , RC
wr, R

C
lr and RC

ir profiles

of trading routes 2.1 and 2.2 under market condition p1 = 0.9 for a call option

expired at T = 100 are presented in Figures 5.16-5.19 below.
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Figure 5.16: APVP of routes 2.1 and 2.2 for call option expired at T = 100 under
market condition p1 = 0.9 and different noise levels p2.
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Figure 5.17: WR of routes 2.1 and 2.2 for call option expired at T = 100 under
market condition p1 = 0.9 and different noise levels p2.
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Figure 5.18: LR of routes 2.1 and 2.2 for call option expired at T = 100 under
market condition p1 = 0.9 and different noise levels p2.
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Figure 5.19: IR of routes 2.1 and 2.2 for call option expired at T = 100 under market
condition p1 = 0.9 and different noise levels p2.

From Figure 5.19, it could found that route 2.1 is more sensitive to noise affection

than route 2.2. More precisely, given the same amount of data available, route 2.1 as

imprecise probability trading route has higher inaction than route 2.2 under different

noise levels affection. Moreover, with a higher threshold value w, route 2.1 tends to

be more conservative in trading. Although from Figure 5.18 under market condition

p1 = 0.9, both trading route 2.1 and route 2.2 seems to have similar loss rate.

Simulation results from market condition p1 ∈ (0.1, 0.5) has shown that route 2.1

has a lower loss rate than route 2.2, especially when a higher threshold value is set.

From Figure 5.17, it appears that the win rate of route 2.1 is significantly lower than
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route 2.2 when noise level p2 ∈ (0.4, 0.6). However, one should notice this is mainly

attributed to higher inaction rate of route 2.1 when noise level p2 ∈ (0.4, 0.6) from

Figure 5.19. In contrast, from Figure 5.16, it is found that route 2.2 as imprecise

expectation trading route generally has higher average present value payoff than

route 2.1 under different noise levels. Overall, one could conclude that both routes

2.1 and route 2.2 are able to recognize level under different market conditions and

take less trading accordingly. Moreover, both trading routes maintain their primary

trading objective under different market conditions and noise levels. With the same

amount of noise level increase, route 2.1, as a more conservative trading route, has

a higher increment in its inaction rate, resulting in quicker decay phenomenon on

the fCi surface.

5.1.3 Overall review of European call option trading simu-

lation

From Section 5.1.2, one could reach following conclusion:

The proposed NPI trading route 2.1 and route 2.2 have good performance under

all market conditions and different noise levels. It is confirmed that both proposed

trading route has quick learning in data, noise recognition, market condition recog-

nition and predictability in nature.

Both trading routes are able to extract correct underlying information from the

data effectively and efficiently and take corresponding correct action under different

market conditions. The data learning process also has moderate noise resistance

when a low noise level is presented. When the data is affected by a high noise level,

both trading routes are able to recognize and stop taking any non sensible action

readily.

Under no noise or low noise condition, given relatively enough data, route 2.1

has good risk control while route 2.2 is able to achieve higher average present value

payoff throughout all different market conditions.
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5.2 NPI method in European put option trading

In this section, we apply NPI method in European put option trading. Firstly,

a simple put option trading scenario is specified. Under this scenario, two corre-

sponding NPI put option trading routes are proposed. Subsequently, simulations

are conducted to evaluate the performance of the proposed European put option

trading routes by five different performance indexes.

5.2.1 Put option trading Scenario setting

Consider the scenario: one is allowed to long or short the one unit of put option

with strike price K and maturity date T at a price ΛQ
p (a0, K) in time 0. Also,

one is allowed to invest or borrow ΛQ
p (a0, K) with risk free interest rate r at time

0. Whatever position one enters, one has to keep the position for time length T

and is obligated to close all risk position at time T (One is allowed to buy, sell or

short sell the asset at price AT for closing the risk position in time T ). How should

one, who is a NPI imprecise probability believer, without using any of his or her

capital, make one’s decision in trading to maximize one’s capital gain in present

value probabilistically or expectationally at time T? (Assume one’s capital is able

to cover any potential loss)?

In the scenario, the key points to emphasize are: fixed entering position time

point, fixed closing position time point, one single put is available to long or short.

One is interested in the put option payoff Λp(AT , K) = (K−AT (ST ))+ at time T .

Since Λp(AT , K) = (K − AT (ST ))+ is monotonically decreasing function of AT and

AT (·) is monotonically increasing function ST . Thus Λp(AT , K) is monotonically

increasing function of ST . One therefore can compute E(Λp(AT , K)),E(Λp(AT , K))

by construct p
Λp(AT ,K)

(·),and pΛp(AT ,K)(·) using Formulas 2.2.31 and 2.2.32.

A NPI believer, who prefer to use imprecise probability operator p and p could

use following on European put option trading route in this scenario at time 0:

Set threshold value 0.5 < w < 1. From NPI setting, one has 0 < p((K −

AT (ST ))+ > B(T )ΛQ
p (a0, K)) < p((K − AT (ST ))+ > B(T )ΛQ

p (a0, K)) < 1 if ST (

NT
0 and ST 6= ∅.



5.2. NPI method in European put option trading 117

Imprecise probability European put trading route 2.3:



Borrow cash ΛQ
p (a0, K) and buy the put option at time 0,

Buy the asset at time T and immediately exercise the option to sell the asset with

price K at time T if K > AT , return cash ΛQ
p (a0, K)B(T ) to the lender at time T

if p[(K − AT (ST ))+ > B(T )ΛQ
p (a0, K)] > w

Short the put option at time 0 for ΛQ
p (a0, K), invest ΛQ

p (a0, K) for risk free rate r

close all the position at time T if p[(K − AT (ST ))+ < B(T )ΛQ
p (a0, K)] > w

No action if none of above satisfied

Motivation behind NPI imprecise probability European put option trading route

2.3:

Consider the event (K −AT (ST ))+ > B(T )ΛQ
p (a0, K) that the payoff of the put

option at time T is greater than the interest B(T )ΛQ
p (a0, K) generated at time T

by ΛQ
p (a0, K) at risk free rate r at time 0. If the lower probability of this event is

greater than threshold value w (w > 0.5), then one would prefer to buy this put

option and expect to earn more than B(T )ΛQ
p (a0, K) from the put option payoff in

future time T .

On the contrary, consider the event (K − AT (ST ))+ < B(T )ΛQ
p (a0, K) that the

payoff the put option at future time T is less than interest generated by investing

ΛQ
p (a0, K) at time 0. If the lower probability of this event is greater than threshold

value w (w > 0.5), then one would expect the payoff of put option more likely to be

less than the interest generated by investing ΛQ
p (a0, K) at time 0. Thus one would

prefer to short sell the put option and invest the amount ΛQ
p (a0, K) with risk free

rate r.

If none of above conditions are satisfied, one would better off take no action as

the lower probability of the desirable event is not significant enough for one to make

a confident decision.
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One can show that only one of actions could be taken in Route 2.3: Using

inequality and conjugacy property of imprecise probability, one could know:

if p[(K − AT (ST ))+ > B(T )ΛQ
p (a0, K)] > w

then, by congugacy property

1− p[(K − AT (ST ))+ < B(T )ΛQ
p (a0, K)] > w

by imprecise probability inequality

p[(K − AT (ST ))+ < B(T )ΛQ
p (a0, K)] < p[(K − AT (ST ))+ < B(T )ΛQ

p (a0, K)] < 1− w < w

Thus, only one action could be taken in the imprecise probability European put

option trading route.

Under the presetting scenario, a NPI believer, who prefer to use imprecise ex-

pectation operator E and E could use following European put trading route at time

0:

Imprecise expectation European put trading route 2.4:



Borrow cash ΛQ
p (a0, K) and buy the put option at time 0,

at time T buy the asset and immediately exercise the option to sell the asset

with price K if K > AT , also return cash ΛQ
p (a0, K)B(T ) to the lender

if: E[(K − AT )+] > B(T )ΛQ
p (a0, K)

Short the put option at time 0 for ΛQ
p (a0, K), invest ΛQ

p (a0, K) for risk free rate r

close all the position at time T if E[(K − AT )+] < B(T )ΛQ
p (a0, K)

No action if none of above satisfied

Motivation behind NPI imprecise expectation European put option trading route

2.4:

When the lower expectation of put option payoff E[(K − AT )+] at future time

T is greater than the interest B(T )ΛQ
p (a0, K) generated at time T by borrowing
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ΛQ
p (a0, K) at time 0 into risk free interest rate r, one would prefer to borrow

ΛQ
p (a0, K) at time 0 and buy the put option and expect to receive at least the

amount of E[(K − AT )+]−B(T )ΛQ
p (a0, K) at time T .

If the upper expectation of put option payoff E[(K − AT )+] at future time T

is less than interest B(T )ΛQ
p (a0, K) generated at time T by investing ΛQ

p (a0, K) at

time 0 into risk free interest rate r, one would rationally choose to short the put

option and invest the money received into risk free rate, expecting monetary value

in hand at time T is at least B(T )ΛQ
p (a0, K) − E[(K − AT )+] by closing all risk

position.

It is also easy to show that only one of actions could be taken in Route 2.4: In

the imprecise probability framework, one has E[(K − AT )+] ≤ E[(K − AT )+] and

therefore E[(K − AT )+] > B(T )ΛQ
p (a0, K) and E[(K − AT )+] < B(T )ΛQ

p (a0, K)

could not be satisfied at the same time.

5.2.2 Simulation of put option trading in NPI Bernoulli

model

In this section, we use simulation to study the performance of two proposed NPI

European put option trading routes in the prescribed scenario setting.

We only present simulation results with following valued predefined parameters

r, u, d, a0 and K. Other value of predefined parameters values are also simulated,

they all have similar patterns.

[Predefined parameters value r, u, d, a0 and K] We use the same predefined

parameter value for r, u, d, a0 as asset trading chapter and put option strike price

K is set at K = 98

All the decisions routes are simulated 100,000 times using the statistical software

R version 3.5.1. The data generating process of underlying asset price is the same

as in the asset trading simulation which will not be repeatedly stated here.
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Performance evaluation function fPi

The performances of NPI European put trading routes are measured by five statistics

of the present value pay-off function fPi (n, T, i) in 100000 simulations. fPi (n, T, i) is

defined as follow:

fPi (n, T, i)

=


(K − AT (ST ))+B(T )−1 − ΛQ

p (a0, K) if first action of the trading route is taken

ΛQ
p (a0, K)− (K − AT (ST ))+B(T )−1 if second action of the trading route is taken

0 if no action

where the inputs:

n is the length of historical asset price data one could learn;

T is the future time that the this function is evaluate;

i ∈ (1, 100000) is the index of that particular simulation trial.

Five performance statistics of this function measure from 100000 simulations are:

Average present value payoff fPi =

∑
i

fPi

100000
Win-loss ratio RP

wl =
|{i : fPi > 0}|
|{i : fPi < 0}|

Win rate RP
wr =

|{i : fPi > 0}|
100, 000

Loss rate RP
lr =

|{i : fPi ) < 0}|
100, 000

Inaction rate RP
ir =

|{i : fPi = 0}|
100, 000

Sample simulation trials of different put option trading routes given pre-

cise or imprecise data

Several simulation trials are provided to illustrate how each put option trading routes

work in the simulation process.

Simulation trial 1 Underlying market condition p = 0.1 (For the investor, this

information is hidden), one observes following precise data of a asset in past 7 time

stages
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Time stage -7 -6 -5 -4 -3 -2 -1

Data (p = 0.1) 0 0 0 0 0 0 0

Equivalently (n, j) = (7, 0)

With predefined parameters value, one needs to make a decision whether or not

enter a risk position of a put option of which the mature time is at time T = 7. By

CRR pricing model, q = er−d
u−d = 0.5044 and current market price ΛQ

p (a0, K) is

ΛQ
p (a0, K) = B(T )−1

T∑
ST =0

(
T

ST

)
(K − A0u

ST dT−ST )+qST (1− q)T−ST

= B(7)−1

7∑
ST =0

(
7

ST

)
(98− 100 ∗ 1.03ST (

1

1.03
)
7−ST

)+qST (1− q)T−t−ST

= 2.0094

If one uses route 2.3 (imprecise probability trading route) and set threshold

value w = 0.65. One firstly finds out m such that (K −A7(m))+ = B(T )ΛQ
p (a0, K).

m ≈ 2.8060, One then find out m1 = dme = 3, m2 = bmc = 2 and calculate

p
(7,0)

(S7 ≤ m2) = 0.9038 > w and p
(7,0)

(S7 ≥ m1) = 0 < w, thus one will take first

action of route 2.3.

If one uses route 2.4 (imprecise expectation trading route), one will find out

E(7,0)[(K −AT )+] = 12.4349 > ΛQ
p (a0, K)B(7) = 2.0193 and E(7,0)(A7) = 16.6909 >

ΛQ
p (a0, K)B(7) = 2.0193. Thus, one will take first action route 2.4 and execute the

same strategy as one uses route 2.3.

Simulation trial 2 Underlying market condition p = 0.9, one observes following

data of a asset in past 7 time stages

Time stage -7 -6 -5 -4 -3 -2 -1

Data (p = 0.9) 1 1 1 0 1 0 1

Equivalently (n, j) = (7, 5)

One needs to decide whether or not enter a risk position of a put option which

expired at future 7 time units. If one uses route 2.3 (imprecise probability trading

route) and set threshold value w = 0.6. With the predefined parameters value, cur-

rent market price ΛQ
p (a0, K) is still 2.0094. The value m such that (K −A7(m))+ =
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B(T )ΛQ
p (a0, K) is still m ≈ 2.8060. One then still find out m1 = dme = 3, m2 =

bmc = 2 calculate p
(7,5)

(S7 ≤ m2) = 0.0513 < w and p
(7,5)

(S7 ≥ m1) = 0.8569 > w,

therefore one uses route 2.3 will take the second action.

If one uses route 2.4 (imprecise expectation trading route), one will find out

E(7,5)[(K − AT )+] = 0.4951 < ΛQ
p (a0, K)B(7) = 2.0193 and E(7,5)(A7) = 1.3888 <

ΛQ
p (a0, K)B(7) = 2.0193. Thus, one would take second action of route 2.4 in this

trial.

Simulation trial 3 Underlying market condition p1 = 0.2, and noise level p2 = 0.3,

one observes following data of a asset in past 7 time stages.

Time stage -7 -6 -5 -4 -3 -2 -1

Data (p1 = 0.2 , p2 = 0.3) 0 {0,1} {0,1} {0,1} 0 0 0

Equivalently [n, J ] = [7, (0, 3)]

One needs to make a decision as above. If one uses route 2.3 (imprecise prob-

ability trading route) and set threshold value w = 0.65. The value m such that

(K − A7(m))+ = B(T )ΛQ
p (a0, K) is still m ≈ 2.8060. Set m1 = dme = 3, m2 =

bmc = 2 and calculate p
[7,(0,3)]

(S7 ≤ 2) = 0.2960 < w and p
[7,(0,3)]

(S7 ≥ 3) = 0 < w

so one will take no action in this case.

If one is using route 2.4 (imprecise expectation trading route), one will find

out E[7,(0,3)][(AT − K)+] = 2.9773 > ΛQ
p (a0, K)B(7) = 2.0193 and E(7,(0,3))(A7) =

16.6909 > ΛQ
p (a0, K)B(7) = 2.0193. Thus, one will take first action of route 2.4 in

this case.

Simulation trial 4 Underlying market condition p1 = 0.8, and noise level p2 = 0.6,

one observes following data of a asset in past 7 time stages.

Time stage -7 -6 -5 -4 -3 -2 -1

Data (p1 = 0.8 , p2 = 0.6) {0,1} {0,1} 0 {0,1} 1 {0,1} 1

Equivalently [n, J ] = [7, (2, 6)]

With the same situation, one uses route 2.3 (imprecise probability route) and set

threshold value w = 0.6. One calculate p
[7,(2,6)]

(S7 ≤ 2) = 0.0105 < w and

p
[7,(2,6)]

(S7 ≥ 3) = 0.2797 < w, so one will take no action in this case.
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If one uses route 2.4 (imprecise expectation trading route), one will find out

E[7,(2,6)][(K−AT )+] = 0.1041 < ΛQ
p (a0, K)B(7) = 2.0193 and E(7,(2,6))[(K−AT )+] =

8.5749 > ΛQ
p (a0, K)B(7) = 2.0193. Thus, one who uses route 2.4 will take no action

in this case.

Performance of NPI put option trading routes under average market

condition given precise data available

Given precise data, under the average market condition, the performances of pro-

posed NPI European put trading routes are evaluated and discussed below.

Given n ∈ (1, 100) units of precise data, the average present value payoff of route

2.3 and route 2.4 for put option expired at future time T ∈ (1, 100) is presented in

Figure 5.20. It could be observed from Figure 5.20 that both trading routes 2.3

and route 2.4 produce positive average present value payoff for put options with

different expiration dates. Both of trading routes have similar value in fPi for most

combinations of the size of available data and expiration date of the put option.

Specifically, one could observe with a small amount of data available, route 2.4 is

able to generate higher fPi that route 2.3 due to the same reason explained in the

call option trading section.

To examine the put option trading routes’ performance in more detail, the per-

formance indexes fPi , RP
wl, R

P
wr, R

P
lr and RP

ir are presented in Figure 5.21

From Figure 5.21, it could be seen that both put option trading routes 2.3 and

2.4 exhibit similar features as routes 2.1 and 2.2 for call option trading. Both trading

routes 2.3 and 2.4 has quick speed of learning in data. When 20 units of historical

data becomes available, both trading routes are able to achieve close to its optimum

performance in all indexes. As one may have expected, the expectation trading

route 2.4 is able to produce higher fPi , but the performance in risk control of RP
wl

and RP
lr are worse than route 2.3. Nevertheless, it should not be neglected that both

trading routes has loss rate less than 0.2 for put option expired in T = 100 when 15

units of data points become available. Also, both trading routes are able to avoid

making non sensible trading when only a small amount of data is presented. (This

is reflected in higher inaction rates for small n in Figure 5.21)
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Figure 5.20: APVP of routes 2.3 and 2.4 for put option with different expiration
date under average market condition given precise data.
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Figure 5.21: Performance comparison of routes 2.3 and 2.4 for put option expired
in T = 100 under average market condition given precise data.

Performance of NPI put option trading routes under different market

conditions given precise data available

Given precise data, the proposed NPI put option trading routes are further examined

under different market condition below.
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Figure 5.22: Under different market conditions, APVP of trading route 2.3 with
threshold value w = 0.6.
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Figure 5.23: Under different market conditions, APVP of trading route 2.4.

Using the presetting parameter values in the simulation, one could know that
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for a put option which expired in time T = 100, the maximum present value payoff

could achieved by action 1, namely borrowing cash and buying the put option, is

(K − a0d
100)B(100)−1 = 86.52308 and the maximum present value payoff could be

achieved by action 2, namely short selling the put option and invest the cash in risk

free rate is B(T )ΛQ
p (a0, K) = 7.9670.

When the market condition is declining for the underlying asset price (p < 0.5),

one would have better chance to make a profit if one chooses to borrow cash and

buy and the put option. On the contrary, if the market condition is surging for the

underlying asset price (p > 0.5), one would have better chance to make a profit if

one short sell the put option and invest the received cash into risk free rate.

From Figure 5.22 and Figure 5.23, one could see that when the more than 20

units of data point are gathered, both trading routes 2.3 and 2.4 are able to learn

and recognize the market condition from the data, also execute the correct action

according to the market condition (As described above). Although average trading

loss does happen in route 2.3 when the market condition is p = 0.5 and route 2.4

when the market condition is p ∈ (0.6, 0.8), one should notice that the average

trading loss only happens in the case where a small amount of data is available

(n < 5) and when it happens, the loss amount is well controlled at a low level.

To have a better understanding of both trading routes, the performance indexes

RP
wl, R

P
wr, R

P
lr and RP

ir of routes 2.3 and 2.4 for a put option expired at time T = 100

are plotted in Figures 5.24-5.28.
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Figure 5.24: Under different market conditions, APVP of trading routes 2.3 and 2.4.
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Figure 5.25: Under different market conditions, WR of trading routes 2.3 and 2.4.
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Figure 5.26: Under different market conditions, LR of trading routes 2.3 and 2.4.
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Figure 5.27: Under different market conditions, WLR of trading routes 2.3 and 2.4.
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Figure 5.28: Under different market conditions, IR of trading routes 2.3 and 2.4.

From Figure 5.28, one could observe that with a small amount of data available,

both routes 2.3 and 2.4 have extremely high inaction rate. In other words, both

trading routes avoid taking non sensible action when there is only a limited amount

of information is known. After enough data are gathered n > 15, both trading

routes have higher inaction rate when the market condition is relatively neutral

p ∈ (0.4, 0.6). This is reasonable because in those conditions, neither taking action

1 nor action 2 would result in a positive payoff for a level of certainty. Moreover, one

may notice route 2.4 is generally more active than route 2.3 throughout all market

conditions, as its primary objective to achieve maximum payoff on average with less
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focused on the loss rate control.

From Figure 5.24, it could be seen that route 2.4 indeed has the primary objective

to achieve maximum payoff on average. It has a higher payoff than route 2.3 when

the market condition is favorable for buying the put option (p < 0.5). When the

market condition is more favorable to short sell the put option (p > 0.5), both

trading routes 2.3 and 2.4 have similar payoffs. Route 2.3, in contrast, is better at

risk control. This could be confirmed from Figure 5.26. It overall has a lower loss

rate than route 2.4 for all the market condition. Its threshold parameter w also

offers one the flexibility for one to adjust this. The higher threshold parameter w

one sets, the lower loss rate one could expect from route 2.3.

As regard to the win rate profile (See Figure 5.25), by staying more active, route

2.4 does have higher win rate when the market condition is favorable for buying the

put option (p < 0.5). However, due to its lack of control in risk, its win rate is lower

than route 2.3 when the market condition is more favorable for short sell the put

option (p > 0.5). This results in higher win-loss ratio for route 2.4 when p < 0.5

and lower win-loss ratio for route 2.4 when p > 0.5. (See Figure 5.27)

Overall, it could be confirmed that both trading routes are able to learn and

recognize the underlying market condition p from the data and execute the cor-

rect action accordingly. Route 2.3 is better at avoiding making losses in trading

while route 2.4 is better at achieving higher present value payoff in different market

conditions.

Performance of NPI put option trading routes under average market

condition given imprecise data available

Under the average market condition, subject to the different noise levels, the per-

formance of NPI European put option trading routes are evaluated below.
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Figure 5.29: With average market condition, APVP of trading route 2.3 with thresh-
old value w = 0.6 under different noise levels p2.
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Figure 5.30: With average market condition, APVP of trading route 2.4 under
different noise levels p2.

Given n units data point, the average present value payoff fPi surfaces of route
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2.3 with threshold value w = 0.6 and route 2.4 for different put option expired in 1

to 100 units time are plotted in Figure 5.29 and Figure 5.30 respectively.

When the data is affected by low level noise (p2 ≤ 0.3), both trading routes 2.3

and route 2.4 are still able to extract useful information of the market condition in

each simulation trial and execute correct action accordingly. This results in similar

patterns of fPi surfaces to the case where the data has no noise in the previous

discussion.

With noise level p2 increase, one could observe that the fPi surfaces of both

trading routes 2.3 and 2.4 are decaying as more inactions are taking place in both

trading routes. This indicates that both trading routes are able to recognize the

noise level from the data. Also, with the same amount of noise level increase, route

2.3 stay more frequently inactive than route 2.4 due to its risk control nature. This

can be seen from the value of z-axis that route 2.3 is decaying faster than route 2.4.

Overall, under the average market condition, both trading routes 2.3 and 2.4

maintain positive value in average present value payoff throughout all different noise

levels.

Figures 5.31-5.34 present a more direct performance comparison of trading route

2.3 and route 2.4 by plotting the indexes fCi , RC
wr, R

C
lr and RC

ir for a put option

expired at time T = 100. As the noise level increases, the inaction rate of both

trading routes 2.3 and 2.4 increase which results in close to zero loss rate. Therefore,

win-loss ratio RP
wr is not presented here.



5.2. NPI method in European put option trading 138

0 20 40 60 80 100

−
10

0
10

20
30

n

A
P

V
P

 a
t n

oi
se

 le
ve

l =
 0

.1

P route w=0.55
P route w=0.60
P route w=0.66
P route w=0.70
E route

0 20 40 60 80 100

−
10

0
10

20
30

n

A
P

V
P

 a
t n

oi
se

 le
ve

l =
 0

.2

0 20 40 60 80 100

−
10

0
10

20
30

n

A
P

V
P

 a
t n

oi
se

 le
ve

l =
 0

.3

0 20 40 60 80 100

−
10

0
10

20
30

n

A
P

V
P

 a
t n

oi
se

 le
ve

l =
 0

.4

0 20 40 60 80 100

−
10

0
10

20
30

n

A
P

V
P

 a
t n

oi
se

 le
ve

l =
 0

.5

0 20 40 60 80 100

−
10

0
10

20
30

n

A
P

V
P

 a
t n

oi
se

 le
ve

l =
 0

.6

0 20 40 60 80 100

−
10

0
10

20
30

n

A
P

V
P

 a
t n

oi
se

 le
ve

l =
 0

.7

0 20 40 60 80 100

−
10

0
10

20
30

n

A
P

V
P

 a
t n

oi
se

 le
ve

l =
 0

.8

0 20 40 60 80 100

−
10

0
10

20
30

n

A
P

V
P

 a
t n

oi
se

 le
ve

l =
 0

.9

Figure 5.31: With average market condition, APVP of both trading routes 2.3 and
2.4 under different noise levels p2 for a put option expired data at T = 100.
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Figure 5.32: With average market condition, WR of both trading routes 2.3 and 2.4
under different noise levels p2 for a put option expired data at T = 100.
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Figure 5.33: With average market condition, LR of both trading routes 2.3 and 2.4
under different noise levels p2 for a put option expired data at T = 100.
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Figure 5.34: With average market condition, IR of both trading routes 2.3 and 2.4
under different noise levels p2 for a put option expired data at T = 100.

As one may have expected, from Figure 5.34, the inaction rate for both 2.3 and

2.4 increase as the noise level increase. When noise level p2 ≥ 0.5 , with sufficient

data become available, the inaction rate of both trading routes increases to 1. When

the data is only affected by low level noise p2 ∈ (0.1, 0.3), both trading routes are still

able to learn useful information from the data. In these cases, both trading routes

stay moderately active and take correct accordingly.(Indicated by the positive fPi

surface in Figure 5.31). This again confirms the noise recognition capability of both

trading routes.

Under the average market condition and throughout all different noise levels,



5.2. NPI method in European put option trading 142

both of trading routes perverse their original trading objectives respectively. In

other words, route 2.3 has better risk control in RP
lr while route 2.4 has greater fPi

value which could be seen in Figure 5.33 and Figure 5.31 respectively.

Performance of NPI put option trading routes under different market

conditions given imprecise data available

Given imprecise data, the performances of European put option trading routes are

further evaluated under different market conditions below.

It is observed from simulations that both NPI European put option trading

routes effectively and efficiently recognize the noise from the imprecise data and

gradually take less trading action as the noise level increase. Moreover, when the

noise level is low, both trading routes are able to extract the information of the

underlying asset’s market condition and execute correct action accordingly. Since

both NPI put trading routes share similar decaying pattern in fPi and one complete

example of fPi surface for a trading route requires nine pages of space, for the sake of

brevity, we only present one complete example of average present value fPi surface

for trading route 2.3 with threshold value w = 0.6 in the Appendix C. (See Figure

C.1-C.9)

In order to have a direct comparison of route 2.3 and route 2.4, under market

condition p1 = 0.1, for a put option expiration data T = 100, the performance

indexes of fAi , RA
wr, R

A
lr and RA

ir for both put trading routes are plotted again each

other in Figure 5.35-5.38.
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Figure 5.35: APVP of routes 2.3 and 2.4 at T = 100 under market condition p1 = 0.1
and different noise levels p2.
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Figure 5.36: WR of routes 2.3 and 2.4 at T = 100 under market condition p1 = 0.1
and different noise levels p2.
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Figure 5.37: LR of routes 2.3 and 2.4 at T = 100 under market condition p1 = 0.1
and different noise levels p2.
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Figure 5.38: IR of routes 2.3 and 2.4 at T = 100 under market condition p1 = 0.1
and different noise levels p2.

From Figure 5.38, it could be found the inaction rates of both routes 2.3 and 2.4

increase, as the noise level increase in the data. More specifically, under the same

noise level affection, given the same amount of data, route 2.3 has higher inaction

rate than route 2.4. Although from Figure 5.37, it seems that route 2.3 and route

2.4 have similar loss rates under different noise levels affection, it is found in other

simulation results that when market condition p1 ∈ (0.5, 0.9), under the same noise

level affection, route 2.3 actually has a significantly lower loss rate than route 2.4.

Therefore route 2.3 as imprecise probability trading route still has better risk control

than route 2.4. From win rate profile in Figure 5.36, one may notice when noise
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level p2 ∈ (0.4, 0.6), the win rate of route 2.3 is significantly lower than route 2.4.

However, as we have previously observed that both trading routes 2.3 and 2.4 have

similar loss rate in noise region p2 ∈ (0.4, 0.6), the lower win rate of trading route

2.3 in noise region p2 ∈ (0.4, 0.6) is mainly attributed to its higher inaction rate

as it tries to avoid making trading in the ambiguous situation. In contrast, from

Figure 5.35, it could be found that route 2.4 generally has higher average present

value payoff than route 2.3 under different noise levels.

To sum up, both proposed put option trading route 2.3 and route 2.4 are able

to recognize noise level under different market conditions. They have their unique

advantages in trading. While route 2.3 is more sensitive to noise and have good

control of its loss rate, route 2.4 is better at producing higher present value payoff

in the long run.

5.3 Overall review of European put option trad-

ing simulation

From Section 5.2.2, one could reach following conclusion:

The proposed NPI European put trading routes 2.3 and route 2.4 have decent

performance under all market conditions and different noise levels.

Both trading routes are able to extract underlying information from the data

effectively and efficiently and take correct action according to different market con-

ditions preceived. The data learning process also has moderate noise resistance when

only low level noise is presented. When the data is affected by high level noise, both

trading routes are able to quickly recognize and stop taking any non sensible action.

Under no noise or low noise condition, given sufficient data presented, throughout

all different market conditions, route 2.3 has better risk control while route 2.4 is

able to achieve higher average present value payoff.



Chapter 6

Application of NPI method in

portfolio assessment

In this chapter, consider several portfolios each of which comprises of assets and

European options defined in Chapter 2, NPI for Bernoulli data is applied to do

portfolio assessment with respect to two criteria.

6.1 Portfolio assessment scenario and criteria

Under binomial tree model, we consider portfolio assessment scenario as follow: one

attempted to assess the profitability of multiple portfolios at time T . Each portfolio

may contain assets or European options expired at time T . And all the components

within each portfolio are independent. One tries to assess each portfolio by two

different criteria as below:

Criterion I : Expected growth rate of each portfolio at time T

Criterion II: The probability which each portfolio generated a threshold amount

of profit λ at time T

Denote the value of portfolio g at time T as a random variable Y g
T . Y g

T is then

a weighted sum of its components value at time T . Denote the ith component’s

value of portfoilo g at time T as a random variable Xg,i
T , where Xg,i

T can be asset

Xg,i
T = Ag,iT , or European call option Xg,i

T = (Ag,iT − K)+, or European put option

Xg,i
T = (K − Ag,iT )+. Also denote the weight of ith component in the portfolio g as

148
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wg,i and there are in total N g components in the portfolio g, then:

Y g
T =

Ng∑
i=1

wg,iXg,i
T

Ng∑
i=1

wg,i = 1 and 0 ≤ wg,i ≤ 1

Therefore, the portfolio assessment criteria can be rewrite as follow:

Criterion I: Expected growth rate E(rgT ) of the portfolio g at time T

E(rgT ) =
ln(

E(Y g,i
T )

Y g
0,i

)

T
=

ln(
E(

Ng∑
i=1

wg,iXg,i
T )

Ng∑
i=1

wg,ixg,iT

)

T

=

ln(

Ng∑
i=1

wg,iE(Xg,i
T )

Ng∑
i=1

wg,ixg,iT

)

T
By independence of components

Criterion II: The probability that the portfolio g generated a threshold amount

of profit λ at time T . p(Y g
T > λ).

Let eg,iT be any possible value that component i in the portfolio g could take at

time T . then:

p(Y g
T > λ) = p(

Ng∑
i=1

wg,iXg,i
T > λ)

=
∑

eg,2T ,eg,3T ,...eg,N
g

T

p(wg,1Xg,1
T > λ−

Ng∑
i=2

eg,iT )

i=Ng∏
i=2

p(wg,iXg,i
T = eg,iT )

6.2 NPI method in portfolio assessment

Under above scenario setting, we apply NPI method to have a more conservative

portfolio assessment by replacing the expectation operator and probability operator

in criteria I & II to the lower expectation operator and lower probability operator

respectively. Thus the criteria become :
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Criterion I: Lower expected growth rate E(rgT ) of portfolio g at time T

E(rgT ) =
ln(

E(Y g,i
T )

Y g
0,i

)

T
=

ln(
E(

Ng∑
i=1

wg,iXg,i
T )

Ng∑
i=1

wg,ixg,iT

)

T

=

ln(

Ng∑
i=1

wg,iE(Xg,i
T )

Ng∑
i=1

wg,ixg,iT

)

T
By Formulas 2.1.10

Criterion II: The lower probability that portfolio g generated a threshold amount

of profit λ at time T . p(Y g
T > λ)

Let eg,iT be any possible value that component i in the portfolio g could take at

time T . then:

p(Y g
T > λ) = inf

p∈Pm

p(
Ng∑
i=1

wg,iXg,i
T > λ) By Formulas 2.1.13

=
∑

eg,2T ,eg,3T ,...eg,N
g

T

p
E(X

g,1
T

)
(wg,1Xg,1

T > λ−
Ng∑
i=2

eg,iT )

i=Ng∏
i=2

p
E(X

g,i
T

)
(wg,iXg,i

T = eg,iT )

6.3 Simulation of NPI for portfolio assessment

In order to evaluate the performance of NPI method in portfolio assessment, com-

puter simulation is conducted in this section using statistical software R version

3.5.1.

6.3.1 Simulation design

The simulation is designed as the following:

1. One generates a sequence of portfolios, each portfolio g contains a different

combination of independent assets and European option with individual specified

parameters. The number of component in each portfolio is set at 3 to 5 at random.

Also, there are n historical data points for each component in each portfolio.

2. One then applies NPI for Bernoulli data to learn information from n historical

data points from each component and induce 3 to 5 independent imprecise prob-
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ability spaces for each portfolio. One subsequently find the E(rgT ) and p(Y g
T > λ)

from NPI induced imprecise probability spaces for each portfolio g and produce a

rank list for both criteria.

3. Evaluate the performance of NPI method for portfolio assessment of both

criteria by comparing the true rank list and the rank list produced by NPI.

The comparison of rank lists is achieved by evaluating the average value of Error

function Err(Rv(E)) and Err(Rv(p)). Error function Err(Rv(E)) and Err(Rv(p))

are defined below:

We denote true rank of portfolio g with respect to criterion I E(rgT ) and criterion

II p(Y g
T > λ) as Rv(E(rgT )) and Rv(p(Y

g
T > λ)) in vth simulation trial. And we also

denote the corresponding rank produced NPI method of portfolio g with respect to

two criteria as Rv(E(rgT )) and Rv(p(Y
g
T > λ)) in vth simulation trial. We then define

error function Err(Rv(E)) for the rank with respect to criterion I in vth trial as:

Err(Rv(E)) =
∑
g

|Rv(E(rgT ))−Rv(E(rgT ))| (6.3.1)

We also define error function Err(Rv(p)) for the rank with respect to criterion

II in vth trial as:

Err(Rv(p)) =
∑
g

|Rv(p(Y
g
T > λ))−Rv(p(Y

g
T > λ))| (6.3.2)

Throughout the whole simulation section, we choose the λ in criterion II as

λ = erTY g
0 . Namely one is finding the lower probability of the event that portfolio

g at time T would generate interest rate rg that is greater than risk free rate r and

the risk free interest rate r is set at r = 0.003.

6.3.2 Sample simulation trials

To have a better understanding of how the simulation conducted, we provide two

simulation trials with risk free interest rate r = 0.003 for illustration. Denote pg,i as
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market condition for component i within portfolio g, and also denote (ng,i, jg,i) as

Bernoulli data for component i within portfolio g.

Simulation trial 1: historical data point n = 100 in each component, as-

sessment for future time T = 10

Table 6.1: Random generated portfolios in simulation trial 1

Portfolio g Xg,i
T=10 within Y g,i

T=10 pg,i of Xg,i
T=10 Data (ng,i, jg,i)

1

X1,1
T=10 : A, 1.0487, 0.9438, 105 0.0378 (100,2)

X1,2
T=10 : C, 1.0555, 0.9480, 109, 122 0.9544 (100,94)

X1,3
T=10 : A, 1.0136, 0.9161, 97 0.1481 (100,14)

X1,4
T=10 : A, 1.0067, 0.9921, 85 0.3249 (100,33)

X1,5
T=10 : C, 1.0522, 0.9235, 97, 116 0.6147 (100,58)

2
X2,1
T=10 : P, 1.0354, 0.9577, 91, 81 0.5196 (100,57)

X2,2
T=10 : P, 1.0883, 0.9539, 105, 92 0.5332 (100,52)

X2,3
T=10 : A, 1.0042, 0.9165, 105 0.8379 (100,83)

3
X3,1
T=10 : P, 1.0317, 0.9148, 107, 90 0.2473 (100,21)

X3,2
T=10 : A, 1.0461, 0.9379, 102, 0.0703 (100,5)

X3,3
T=10 : P, 1.0326, 0.9863, 110 ,98 0.2695 (100,25)

4
X4,1
T=10 : C, 1.0781, 0.9698, 105, 115 0.9596 (100,97)

X4,2
T=10 : A, 1.0383, 0.9155, 103 0.1068 (100,2)

X4,3
T=10 : C, 1.0893, 0.9803, 107 ,116 0.0430 (100,7)

5
X5,1
T=10 : A, 1.0987, 0.9573, 93 0.2044 (100,25)

X5,2
T=10 : P, 1.0818, 0.9681, 106 ,97 0.0863 (100,16)

X5,3
T=10 : P, 1.0775, 0.9148, 101 ,80 0.2571 (100,29)

Table 6.2: NPI assessment for criteria I against the true value in simulation trial 1

Portfolio g True E(rgT ) NPI E(rgT ) rank of E(rgT ) rank of E(rgT )

1 -0.0159 -0.0185 1 1

2 -0.0111 -0.0129 3 3

3 -0.0151 -0.0143 2 2

4 0.0266 0.0253 5 5

5 0.0133 0.0100 4 4
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Table 6.3: NPI assessment for criteria II against the true value in simulation trial 1

Portfolio g True p(Y g
T > λ) NPI p(Y g

T > λ) rank of p(Y g
T > λ) rank of p(Y g

T > λ)

1 0.0039 0.0017 1 1

2 0.188 0.1653 3 3

3 0.0119 0.0113 2 2

4 0.7381 0.7390 5 5

5 0.7131 0.6112 4 4

Table 6.1 is a random portfolios generation table. In this simulation trial, it shows

that one is given 5 portfolio g in column 1. In column 2, it gives the information

of the components in each portfolio. Each individual portfolio g contains 3 to 5

component Xg,i
T=10 of which maybe asset, call or put. And the component Xg,i

T=10

information are presented in order of Type (“A”= Asset, “C” = call, “P”= Put),

value of upward movement coefficient u, value of downward movement coefficient d,

value of initial asset price ag,i0 , value of strike price Kg,i (if applicable). In column

3, the market condition pg,i ∈ (0, 1) of each component Xg,i
T=10 within portfolio g is

presented which the probability of upward movement in each time step, Also this

information is hidden for one who tries to assess the portfolio. In column 4, one is

given Data (ngi , j
g
i ), namely the number of upward movement happened in past 100

historical time steps for component i in portfolio g

The simulation firstly calculate Y g
0 , the value of each portfolio at time 0. which

is sum of each component Xg,i
0 at time 0. If Xg,i is an asset, then Xg,i

0 = Ag,i0 . If

Xg,i is an European option, one use the Q measure q = (er−d)
u−d in CRR model to

calculate non abitrage price as the the market price at time 0 and use it as the value

of Xg,i
0 . The simulation then calculate the true E(rgT ) and true p(Y g

T > λ) using all

the information from table 6.1 and also calculate NPI E(rgT ) and p(Y g
T > λ) using

the all the information from table 6.1 except the column 3. The simulation then

produce the rank of E(rg) and E(rg), also the rank p(Y g
T > λ) and p(Y g

T > λ). This

is presented in Table 6.2 and Table 6.3.

Finally, the simulations calculate the Error function value G and F for this

simulation trial and store this value for later average value calculation.
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From the simulation trial 1 in Tables 6.1-6.3, one could observe that both NPI

lower operator E(rgT ) and p(Y g
T > λ) tend to produce a conservative lower value

when one compare them with the true value of E(rgT ) and true p(Y g
T > λ). More im-

portantly, it gives the correct ranking of the portfolios with respected to two criteria

in this simulation trial and thus have zero value for both Error function Err(Rv(E))

and Err(Rv(p)) .

Simulation trial 2: historical data point n = 10 in each component, as-

sessment for future time T = 10

Table 6.4: Random generated portfolios in simulation trial 2

Portfolio g Xg,i
T=10 within Y g,i

T=10 pg,i of Xg,i
T=10 Data (ng,i, jg,i)

1

X1,1
T=10 : A, 1.0793, 0.9565, 81 0.4655 (10,5)

X1,2
T=10 : A, 1.0401, 0.9541, 106 0.4003 (10,4)

X1,3
T=10 : C, 1.0460, 0.9740, 90, 93 0.5225 (10,8)

X1,4
T=10 : C, 1.0973, 0.9095, 90, 101 0.7213 (10,6)

X1,5
T=10 : P, 1.0981, 0.9815, 87, 74 0.9257 (10,9)

2
X2,1
T=10 : C, 1.0303, 0.9283, 91, 100 0.5679 (10,8)

X2,2
T=10 : A, 1.0450, 0.9236, 105 0.0312 (10,0)

X2,3
T=10 : P, 1.0661, 0.9430, 94, 79 0.7696 (10,7)

3

X3,1
T=10 : A, 1.0114, 0.9217, 103 0.4680 (10,5)

X3,2
T=10 : C, 1.0992, 0.9363, 81, 95 0.3167 (10,4)

X3,2
T=10 : A, 1.0789, 0.9854, 93 0.5077 (10,5)

X3,3
T=10 : A, 1.0817, 0.9590, 88 0.7494 (10,9)

4

X4,1
T=10 : C, 1.0301, 0.9926, 84, 87 0.1107 (10,0)

X4,2
T=10 : P, 1.0618, 0.9741, 107, 93 0.3059 (10,2)

X4,2
T=10 : C, 1.0174, 0.9176, 85, 101 0.6011 (10,6)

X4,3
T=10 : P, 1.0304, 0.9898, 87, 71 0.8144 (10,9)

5
X5,1
T=10 : P, 1.0697, 0.9470, 103, 90 0.6758 (10,7)

X5,2
T=10 : P, 1.0136, 0.9846, 100, 82 0.0981 (10,1)

X5,3
T=10 : C, 1.0199, 0.9851, 97, 113 0.2457 (10,0)
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Table 6.5: NPI assessment for criteria I against the true value in simulation trial 2

Portfolio g True E(rgT ) NPI E(rgT ) rank of E(rgT ) rank of E(rgT )

1 0.1942 0.1443 4 4

2 -0.5430 -0.5225 3 2

3 0.1992 0.2410 5 5

4 -0.6063 -0.0737 2 3

5 -1.5814 -1.2832 1 1

Table 6.6: NPI assessment for criteria II against the true value in simulation trial 2

Portfolio g True p(Y g
T > λ) NPI p(Y g

T > λ) rank of p(Y g
T > λ) rank of p(Y g

T > λ)

1 0.0214 0.0311 4 4

2 2.16× 10−10 0 1 1

3 0.9402 0.9257 5 5

4 1.09× 10−8 5.69× 10−7 2 3

5 0.0001 0 3 2

Tables 6.4-6.6 presents another simulation trial which has less historical data

available n = 10 than the previous simulation trial. And in this simulation trial,

the error function value for criterion I is Err(Rv(E)) = |4− 4|+ |3− 2|+ |5− 5|+

|2 − 3| + |1 − 1| = 2 and the error function value for criterion II is Err(Rv(p)) =

|4− 4|+ |1− 1|+ |5− 5|+ |2− 3|+ |3− 2| = 2

6.3.3 Simulation results

Simulation has been conducted for 5, 10, 15 portfolios assessment. Each case is

simulated for 10000 times using the generation process same as the simulation trials

provided.

The simulation results are presented as follow:
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Simulation results for criterion I

Figure 6.1: With 5, 10 ,15 portfolios, the average value of Err(Rv(E)) with different
combinations of portfolio assessment time T ∈ [1 : 100] and number of available data
pointn ∈ [1, 100]
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Figure 6.1 presents the average value of criterion I error function Err(Rv(E)) with

5, 10, 15 portfolios assessment in each column. One should notice that in Figure

6.1, the z axis in the first row and the y axis in the second and third row are in

different scales.

First row of Figure 6.1 presents Err(Rv(E)) with all combination of portfolio

assessment time T ∈ [1 : 100] and number of available data point n ∈ [1, 100]. From

Figure 6.1 first row, one could see that as the number of portfolios increases, the

average value of criterion I error function Err(Rv(E)) increase. However, since as

the number of available data increase, the average value of criterion I error function

Err(Rv(E)) decrease. It can be confirmed that the NPI portfolio assessment for

criterion I effectively learn the information from the data. This could also be seen

in the second row of Figure 6.1.

Second row of Figure 6.1 presents the average value of criterion I error function

Err(Rv(E)) of 5, 10, 15 portfolios assessment in time T = 100 with different num-

ber of data point available n ∈ [1, 100]. As it could observed that for portfolios

assessment in time T = 100, as number of data available increase, the average value

of criterion I error function Err(Rv(E)) does decrease. The information learning

speed is very quick when the number of data n is less than 37. When n < 37, on

average, there are 0.0938, 0.3693, 0.8275 reduction in Err(Rv(E)) in the case of 5,

10, 15 portfolios assessment when one more unit data become available. Moreover,

with sufficient data become available, the average value of Err(Rv(E)) for 5, 10, 15

portfolios assessment dropped to approximately 0.84, 3.66, 8.20 respectively. Those

are acceptable value for average value of Err(Rv(E)) in the corresponding case.

Because one should know that the smallest error could happens in the rank order

is a permutation in any two adjacent true rank position and the smallest error will

contribute a error value of 2 in Err(Rv(E)). Thus, the average values of Err(Rv(E))

of 0.84, 3.66, 8.20 in the case with 5, 10 ,15 portfolios are well performed results of

NPI portfolio assessment for criterion I.

From third row of Figure 6.1, one can notice with the number of historical data

n = 100 available, the average value of Err(Rv(E)) is insensitive to the portfolio

assessment time T . As assessment time increase from 1 to 100, the increment of the



6.3. Simulation of NPI for portfolio assessment 158

average value of criterion I error function Err(Rv(E)) is less than 2 for all cases.

Simulation results for criterion II

Figure 6.2: With 5, 10 ,15 portfolios, the average value of Err(Rv(p)) with different
combinations of portfolio assessment time T ∈ [1 : 100] and number of available
data pointn ∈ [1, 100]
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Figure 6.2 presents the average value of criterion II error function Err(Rv(p)) with

5, 10, 15 portfolios assessment in each column. One should notice that in Figure

6.2, the z axis in the first row and the y axis in the second and third row are in

different scales.

First row of Figure 6.2 presents Err(Rv(p)) with all combinations of portfolio

assessment time T ∈ [1 : 100] and the number of data available n ∈ [1, 100]. The

surface of Err(Rv(p)) has different phenomenon than the case of Err(Rv(E)) in

Figure 6.1. Although the proposed NPI assessment method with respect to criterion

II generally has greater magnitude of error compared to NPI method with respect

to criterion I, it is still able to learn information from the data and reduce the

error as the number of available data point increase. Similar to Err(Rv(E)), the

average magnitude of Err(Rv(p)) increase as the number of portfolios increase. It

also appears that the proposed methods for criterion II is sensitive to the portfolio

assessment time T when T is small. However, It gradually becomes insensitive when

portfolio assessment time T become larger.

Second row of Figure 6.2 presents Err(Rv(p)) at portfolio assessment time T =

100 with different number of available data point n ∈ [1, 100]. When the number of

available data point n < 21, the proposed method for criterion II has steep learning

effect with 0.1426, 0.5843, 1.3495 decrement occurs in average value of Err(Rv(p))

in the case of 5, 10, 15 portfolios assessment when one more data point becomes

available. After sufficient data is presented, the error function Err(Rv(p)) drop to

roughly 2.51, 10.59, 23.48 for 5, 10, 15 portfolios assessment respectively. Although

the performance of the proposed method for criterion II is less remarkable than the

method for criterion I when portfolio assessment time T is large, it nevertheless

provide a good solution in the cases when portfolio assessment time T is small,

indicated by the third row of Figure 6.2.

Third row of Figure 6.2 presents average value of Err(Rv(p)) with different

portfolio assessment time T ∈ [1, 100] when the number of available data is n = 100.

It could be seen that Err(Rv(p)) is very sensitive to portfolio assessment time when

T ≤ 22. When T = 20, given n = 100 unit of available data, Err(Rv(p)) has

average value approximately at 1.78, 7.50, 17.01 for 5, 10, 15 portfolios assessments
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respectively. This indicated the proposed method for criterion II is still able to

produce acceptable evaluation when portfolio assessment time T is small.

6.4 Conclusion of NPI in portfolio assessment

In this chapter, under the binomial tree model, NPI method is applied to portfolio

assessment with respect to two criteria. Criterion I is the expected growth rate of a

portfolio at a specific future time and Criterion II is the probability that portfolio

generated a threshold amount of profit at a specific future time. Both criteria are

mathematically formulated. Simulations are conducted to evaluate the performance

of proposed NPI portfolio assessment with respect to the criteria. It confirmed the

proposed NPI assessment methods are able to learn the information from the data

and produce a good ranking list for a given set of portfolios. It should, however,

be noticed that the proposed NPI method for criterion I work well for different

assessment time while the proposed NPI method for criterion II only well performed

when the assessment time is in the short future.



Chapter 7

Conclusions and Future Directions

This Chapter presents a summary of the results in this thesis. After that, some

potential future research directions are suggested.

7.1 Conclusions

This thesis further developed imprecise probability methodology NPI for Bernoulli

data to address two current challenging issues and the developed NPI for Bernoulli

data is applied in finance with performance evaluations.

In Chapter 2, a set of imprecise probability definitions based on the concept

of the mass function from Weichselberger’s axiomatization of imprecise probability

theory [39] and Dempster-Shafer’s notion of basic probability assignment [26, 34] is

introduced which provided the basic framework for further development of NPI for

Bernoulli data in Chapter 3. After that, the imprecise probability methodology —

Nonparametric predictive inference (NPI) is presented. Its current development of

NPI for Bernoulli data is reviewed in detail in which two of its challenging issues

are identified. Finally, to facilitate later NPI financial application in Chapter 4-

6, relevant financial objects are defined and corresponding financial concepts and

terminologies are explained.

In Chapter 3, NPI for Bernoulli data is further developed to address two major

challenging issues—computation of imprecise expectation for a general function of

multiple future stages observations and handling of imprecise data. To address the

161



7.1. Conclusions 162

former, a GMA algorithm to find imprecise expectation measure for a general func-

tion of a finite random variable on an imprecise probability space is presented. With

NPI latent variable representation, the mass function of NPI for Bernoulli data is

constructed which enable the usage of GMA algorithm in NPI for Bernoulli data.

A numerical example of how to use the GMA algorithm in NPI for Bernoulli data

is provided. To address the latter, NPI’s path counting method in the underlying

lattice representation is extended which leads to the development of NPI for impre-

cise Bernoulli data. The property of NPI for imprecise Bernoulli data is identified

and presented with a numerical example.

Chapter 4–6 are the sequels of Chapter 3 and Chapter 2. In Chapter 4, NPI for

Bernoulli data and imprecise Bernoulli data are applied to asset trading under the

binomial tree model in a presetting scenario. Two NPI based asset trading routes,

one based imprecise probability, one based on imprecise expectation are proposed.

Simulations are conducted to evaluate the performance of proposed asset trading

routes under the different market conditions and noise levels in the data. From

the simulation results, it is found that the proposed NPI asset trading routes are

able to learn information from data effectively and have predictive property. Both

of asset trading routes are also able to recognize noise contained in the data and

adjust its strategy correspondingly based on the information it could learn from

the noisy data. Under the average market condition, both asset trading routes are

able to produce average positive present value payoff in the long run regardless of

what noise level is contained in the data. It is also found that the proposed asset

trading routes have different primary trading objectives. While the NPI imprecise

expectation asset trading routes have greater average present value payoff generally,

the NPI imprecise probability asset trading route has better risk control in the loss

rate. Overall, the proposed NPI asset trading routes have good performance under

the different market condition and noise level. Depending on one’s risk preference

in trading, one can choose or combine them to use.

In Chapter 5, under binomial tree model and using CRR non arbitrage price

for European options as current market price, NPI for Bernoulli data and imprecise

Bernoulli data are applied to European options trading in the prescribed scenarios.
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Two NPI based European call option trading routes and two NPI based European

put option trading routes are proposed. Simulations are conducted correspondingly

to evaluate their performance under the different market condition and noise level in

the data. From the simulation results, one could confirm that the proposed trading

routes share similar trading primary objectives as appeared in Chapter 4. While

imprecise expectation trading routes are able to produce better average present

value payoff in the long run, imprecise probability trading routes are better at risk

control in loss rate. It is also confirmed the proposed NPI trading routes for both

European call option and put option effectively and efficiently learn the information

from the data and are capable of executing correct action accordingly. When noise is

presented in data, the proposed trading routes are able to recognize the noise level

in the data. This is indicated by the gradual increment of inaction rate as noise

level increases. Overall all proposed NPI European option trading routes are well

performed under the different market condition and noise level in the data.

In Chapter 6, under the binomial tree model and with CRR non arbitrage Eu-

ropean option price as current market price, NPI for Bernoulli data is applied to

portfolio assessment with respect to two criteria. The criteria are firstly mathemat-

ically formulated. Subsequently, NPI method is applied. The performance of NPI

portfolio assessment is evaluated via simulation. From the simulation results, it is

confirmed that the NPI method of portfolio assessment for Criterion I (Expected

grow rate of each portfolio at time T ) could effectively learn information from the

data. The average rank error of NPI method for Criterion I could reduce to a sat-

isfactory level as the number of data increase. Also, the average rank error of NPI

method for Criterion I is insensitive to the portfolio assessment time T . In contrast,

although the NPI method of portfolio assessment for Criterion II (The probability

which each portfolio generated a threshold amount of profit λ at time T ) is also

able to learn the information from the data effectively. However, the average rank

error is in higher magnitude than the NPI method for Criterion I. Moreover, the

NPI method for Criterion II is sensitive to assessment time T , when assessment time

T become larger, NPI method for Criterion II tends to have a higher average rank

error. Nevertheless, if assessment time T is small, NPI method for Criterion II is
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still able to produce a satisfactory rank for the portfolios given.

7.2 Future directions

The presented results from the thesis lead to several potential future research direc-

tions.

First, the lattice counting approach in the mass function construction of NPI for

Bernoulli data could be adopted in the construction of the mass function in NPI for

other data type. This would enable the computation for the imprecise expectations

of a general function of multiple future stages observations in NPI for other data

types.

Second, given a imprecise probability space [Ω,A ,m(·)], a discrete random vari-

able is a function X : Ω −→ F . one can define the lower variance V and the upper

variance V of X as:

V (X) = inf
p(·)∈Pm

∑
ω∈Ω

(
(X(w)−

∑
ω∈Ω

X(ω)p(ω))2 × p(ω)

)

V (X) = sup
p(·)∈Pm

∑
ω∈Ω

(
(X(w)−

∑
ω∈Ω

X(ω)p(ω))2 × p(ω)

)

One can also further define the lower variance measure p
V (X)

(·) and upper variance

measure p
V (X)

(·) as

p
V (X)

(·) = arginf
p(·)∈Pm

∑
ω∈Ω

(
(X(w)−

∑
ω∈Ω

X(ω)p(ω))2 × p(ω)

)

p
V (X)

(·) = argsup
p(·)∈Pm

∑
ω∈Ω

(
(X(w)−

∑
ω∈Ω

X(ω)p(ω))2 × p(ω)

)

Finding the imprecise variance p
V (X)

(·) and p
V (X)

(·) in NPI for Bernoulli data is then

an interesting research problem which involving solving a quadratic linear program-

ming problem with the mass function developed in this thesis.

Third, Chapter 3 presents a way to compute imprecise expectation for a general

function of multiple future stages observations ST . One now may consider the

trading scenario where one needs to trade a bundle of different European options
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with the same underlying asset and expiration date. The payoff of the bundle

at future time T will then be a non-monotonic function of ST and evaluating the

performance of NPI trading routes in this new scenario could be an interesting topic.

Lastly, Chapter 6 in this thesis used NPI method to assess portfolio in terms

of ranking by two criteria individually. There is also an opportunity for one used

NPI method to do portfolio optimization with two criteria taken into accounting

simultaneously.



Bibliography

[1] Aboalkhair, M.A. (2012). Nonparametric predictive inference for system reli-

ability. A thesis presented for the degree of Doctor of Philiosophy, University

of Durham.

[2] Arts, G.R.J., Coolen, F.P.A. and van der Laan, P. (2004). Nonparametric pre-

dictive inference in statistical process control Quality Technology and Quanti-

tative Management, 1, 201–216.

[3] Arts, G.R.J. and Coolen, F.P.A. (2008). Two nonparametric predictive control

charts Journal of Statistical Theory and Practice, 2, 499–512.

[4] Augustin, T. and Coolen, F.P.A. (2004). Nonparametric predictive inference

and interval probability. Journal of Statistical Planning and Inference, 124,

251–272.

[5] Baker, R.M., Coolen-Maturi, T. and Coolen, F.P.A. (2017) Nonparametric

predictive inference for stock returns, Journal of Applied Statistics, 44, 1333–

1349.

[6] Boole, G. (1854). An investigation of the laws of thought on which are founded

the mathematical theories of logic and probabilities. Walton and Maberley,

London.

[7] Chen, J., Coolen, F.P.A. and Coolen-Maturi, T. (2019) On nonparametric

predictive inference for asset and European option trading in the binomial

tree model. Journal of The Operational Research Society, Under final review.

166



Bibliography 167

[8] Coolen, F.P.A (1998). Low structure imprecise predictive inference for Bayes’

problem. Statistics and Probability Letters, 36, 349–357.

[9] Coolen, F.P.A. and Yan, K.J. (2004) Nonparametric predictive inference with

right-censored data. Journal of Statistical Planning and Inference, 126, 25–54.

[10] Coolen-Schrijner, P. and Coolen, F.P.A. (2004). Adaptive age replacement

based on nonparametric predictive inference. Journal of the Operational Re-

search Society 55, 1281–1297.

[11] Coolen, F.P.A. and Augustin, T. (2005) Learning from multinomial data: a

nonparametric predictive alternative to the Imprecise Dirichlet Model. Pro-

ceedings of the Fourth International Symposium on Imprecise Probability: The-

ories and Applications, 125–134.

[12] Coolen, F.P.A. and Coolen-Schrijner, P. (2005). Nonparametric predictive re-

liability demonstration for failure-free periods. IMA Journal of Management

Mathematics, 16, 1–11.

[13] Coolen, F.P.A. (2006). On nonparametric predictive inference and objective

Bayesianism. Journal of Logic, Language and Information, 15, 21–47.

[14] Coolen, F.P.A. (2006). On probabilistic safety assessment in case of zero fail-

ures. Journal of Risk and Reliability, 220, 105–114.

[15] Coolen, F.P.A. (2007). Nonparametric prediction of unobserved failure modes.

Journal of Risk and Reliability, 221, 207–216.

[16] Coolen, F.P.A. (2008). Nonparametric Predictive Inference for Bernoulli

Quantities with Set-Valued Data. In: Soft Methods for Handling Variability

and Imprecision. Advances in Soft Computing, 48. Springer, Berlin, Heidel-

berg. 85–91.

[17] Coolen, F.P.A. and Augustin, T. (2009). A nonparametric predictive alterna-

tive to the Imprecise Dirichlet Model: the case of a known number of cate-

gories. International Journal of Approximate Reasoning, 50, 217–230.



Bibliography 168

[18] Coolen, F.P.A. (2011). Nonparametric predictive inference. In: International

Encyclopedia of Statistical Science, ed. M. Lovric, 968–970. Springer, Berlin.

[19] Coolen, F.P.A. and Al-nefaiee, A.H. (2012). Nonparametric predictive infer-

ence for failure times of systems with exchangeable components. Proceedings

of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reli-

ability. 226(3): 262–273.

[20] Coolen-Maturi, T., Coolen-Schrijner, P. and Coolen, F.P.A. (2011). Nonpara-

metric predictive selection with early experiment termination. Journal of Sta-

tistical Planning and Inference 141(4): 1403–1421.

[21] Coolen-Maturi, T., Coolen-Schrijner, P. and Coolen, F.P.A. (2011). Nonpara-

metric predictive multiple comparisons of lifetime data. Communications in

Statistics - Theory and Methods 41(22): 4164–4181.

[22] Coolen-Schrijner, P., Coolen, F.P.A. and Shaw, S.C. (2006). Nonparametric

adaptive opportunity-based age replacement strategies. Journal of the Opera-

tional Research Society 57, 63–81.

[23] Coolen-Schrijner, P. and Coolen, F.P.A. (2007). Nonparametric predictive

comparison of success-failure data in reliability. Journal of Risk and Relia-

bility, 221 , 319–327.

[24] Coolen-Schrijner, P., Maturi, T.A. and Coolen, F.P.A. (2009). Nonparametric

predictive precedence testing for two groups, Journal of Statistical Theory and

Practice. 3: 273–287.

[25] Cox, J.C., Ross, S.A. and Rubinstein, M. (1979) Option pricing: A simplified

approach. Journal of Financial Economics, 7, 229–235.

[26] Dempster, A.P. (1967). Upper and lower probabilities induced by a multivalued

mapping. The Annals of Mathematical Statistics. 38 (2), 325–339.

[27] He, T., Coolen, F.P.A. and Coolen-Maturi, T. (2019) Nonparametric pre-

dictive inference for European option pricing based on binomial tree model.

Journal of The Operational Research Society



Bibliography 169

[28] He, T. (2019). Nonparametric predictive inference for option pricing based

on the binomial tree model. A thesis presented for the degree of Doctor of

Philiosophy, Univeristy of Durham.

[29] Hill, B.M. (1968). Posterior distribution of percentiles: Bayes’ theorem for

sampling from a population. Journal of the American Statistical Association,

63, 677–691.

[30] Hill, B.M. (1988). De Finetti’s Theorem, Induction, and A(n) or Bayesian

nonparametric predictive inference(with discussion). Bayesian Statistics 3,

Bernardo, et al. (Eds.). Oxford University Press, 211–241.

[31] Hill, B.M. (1993). Parametric models for A(n): splitting processes and mix-

tures. Journal of the Royal Statistical Society B, 55, 423–433.

[32] Hull, J.C. (2009). Options, Futures and other Derivatives (7th ed.) Prentice-

Hall.

[33] Keith, C. and Dirk, N. (2001). Financial Engineering Derivatives and Risk

Management (7th ed.) John Wiley and Sons Ltd.

[34] Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University

Press.

[35] Vicig, P. (2014). Financial risk measurement. In: Introduction to Imprecise

Probabilities, Chapter 12 ed. Augustin, T., Coolen, F.P.A., Cooman, G. and

Troffaes, M.C.M., John Wiley and Sons Ltd.

[36] Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities. Chap-

man and Hall; London (UK).

[37] Walley, P. (1996). Inferences from multinomial data:learning about a bag of

marbles. Journal of the Royal Statistical Society, Series B, 58(1): 3–34.

[38] Walley, P. (1999). Towards a unified theory of imprecise probability. Interna-

tional Journal of Approximate Reasoning, 24 (2000), 125–148.



Bibliography 170

[39] Weichselberger, K. (2000). The theory of interval-probability as a unifying

concept for uncertainty. International Journal of Approximate Reasoning, 24,

149–170.

[40] Weichselberger, K. (2001). Elementare Grundbegriffe einer allgemeineren

Wahrscheinlichkeitsrechnung I. Intervallwahrscheinlichkeit als umfassendes

Konzept. Physika; Heidelberg (Germany).

[41] Weichselberger, K. (2005). The logical concept of probability and statistical

inference. In Fabio G. Cozman, Robert Nau, and Teddy Seidenfeld, editors,

ISIPTA’ 05: Proc. 4th Int. Symp. on Imprecise Probabilities and Their Appli-

cations. 396–405.



Appendix A

Performance evaluation of NPI

asset trading routes

This appendix presents a full example of average present value payoff surface fAi of

asset trading route 1.1 with threshold parameter value w = 0.6 under the different

market conditions and subject to the different noise levels. The example is part

of simulation results in Chapter 4 which shows that the proposed NPI asset trad-

ing routes’ noise recognition capability under different market conditions and data

learning ability under low level noise affection. As mentions in Chapter 4, trading

route 1.1 and 1.2 have similar decaying phenomenons in surface fAi . The presented

example could be regarded as the general property demonstrations for both route

1.1 and route 1.2.
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Figure A.1: Trading route 1.1, w = 0.6, noise p2 = 0.1.
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Figure A.2: Trading route 1.1, w = 0.6, noise p2 = 0.2.
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Figure A.3: Trading route 1.1, w = 0.6, noise p2 = 0.3.
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Figure A.4: Trading route 1.1, w = 0.6, noise p2 = 0.4.
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Figure A.5: Trading route 1.1, w = 0.6, noise p2 = 0.5.
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Figure A.6: Trading route 1.1, w = 0.6, noise p2 = 0.6.
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Figure A.7: Trading route 1.1, w = 0.6, noise p2 = 0.7.



Appendix A. Performance evaluation of NPI asset trading routes 179

Figure A.8: Trading route 1.1, w = 0.6, noise p2 = 0.8.
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Figure A.9: Trading route 1.1, w = 0.6, noise p2 = 0.9.



Appendix B

Performance evaluation of NPI

European call option trading

routes

This appendix presents a full example of average present value payoff surface fCi

of European call option trading route 2.1 with threshold parameter value w = 0.6

under the different market conditions and subject to the different noise levels. The

example is part of simulation results in Chapter 5 which shows that the proposed

NPI European call option trading routes’ noise recognition capability under different

market conditions and data learning ability under low level noise affection. s men-

tions in Chapter 5, trading route 2.1 and 2.2 have similar decaying phenomenons

in surface fCi . The presented example could be regarded as the general property

demonstrations for both route 2.1 and route 2.2.
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Figure B.1: Trading route 2.1, w = 0.6, noise p2 = 0.1.



Appendix B. Performance evaluation of NPI European call option
trading routes 183

Figure B.2: Trading route 2.1, w = 0.6, noise p2 = 0.2.
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Figure B.3: Trading route 2.1, w = 0.6, noise p2 = 0.3.
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Figure B.4: Trading route 2.1, w = 0.6, noise p2 = 0.4.
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Figure B.5: Trading route 2.1, w = 0.6, noise p2 = 0.5.
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Figure B.6: Trading route 2.1, w = 0.6, noise p2 = 0.6.
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Figure B.7: Trading route 2.1, w = 0.6, noise p2 = 0.7.
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Figure B.8: Trading route 2.1, w = 0.6, noise p2 = 0.8.
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Figure B.9: Trading route 2.1, w = 0.6, noise p2 = 0.9.
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Performance evaluation of NPI

European put option trading

routes

This appendix presents a full example of average present value payoff surface fPi

of European put option trading route 2.3 with threshold parameter value w = 0.6

under the different market conditions and subject to the different noise levels. The

example is part of simulation results in Chapter 5 which shows that the proposed

NPI European put option trading routes’ noise recognition capability under different

market conditions and data learning ability under low level noise affection. As

mentions in Chapter 5, trading route 2.3 and 2.4 have similar decaying phenomenons

in surface fPi . The presented example could be regarded as the general property

demonstrations for both route 2.3 and route 2.4.
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Figure C.1: Trading route 2.3, w = 0.6, noise p2 = 0.1.
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Figure C.2: Trading route 2.3, w = 0.6, noise p2 = 0.2.
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Figure C.3: Trading route 2.3, w = 0.6, noise p2 = 0.3.
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Figure C.4: Trading route 2.3, w = 0.6, noise p2 = 0.4.
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Figure C.5: Trading route 2.3, w = 0.6, noise p2 = 0.5.
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Figure C.6: Trading route 2.3, w = 0.6, noise p2 = 0.6.
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Figure C.7: Trading route 2.3, w = 0.6, noise p2 = 0.7.
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Figure C.8: Trading route 2.3, w = 0.6, noise p2 = 0.8.
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Figure C.9: Trading route 2.3, w = 0.6, noise p2 = 0.9.
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