
Nonparametric Predictive Inference

for Acceptance Decisions

Mohamed A. Elsaeiti

A thesis presented for the degree of

Doctor of Philosophy

Department of Mathematical Sciences

University of Durham

England

December 2011



Dedicated
To my parents, children and wife



Nonparametric Predictive Inference for

Acceptance Decisions

Mohamed A. Elsaeiti

Submitted for the degree of Doctor of Philosophy

December 2011

Abstract

This thesis presents new solutions for two acceptance decisions problems. First, we

present methods for basic acceptance sampling for attributes, based on the nonpara-

metric predictive inferential approach for Bernoulli data, which is extended for this

application. We consider acceptance sampling based on destructive tests and on

non-destructive tests. Attention is mostly restricted to single stage sampling, but

extension to two-stage sampling is also considered and discussed.

Secondly, sequential acceptance decision problems are considered with the aim

to select one or more candidates from a group, with the candidates observed sequen-

tially, either per individual or in subgroups, and with the ordering of an individual

compared to previous candidates and those in the same subgroup available. While,

for given total group size, this problem can in principle be solved by dynamic pro-

gramming, the computational effort required makes this not feasible for problems

once the number of candidates to be selected, and the total group size are not small.

We present a new heuristic approach to such problems, based on the principles of

nonparametric predictive inference, and we study its performance via simulations.

The approach is very flexible and computationally straightforward, and has advan-

tages over alternative heuristic rules that have been suggested in the literature.
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Chapter 1

Introduction

1.1 Overview

Logical and optimal decisions have been considered in a number of disciplines. Ac-

ceptance decisions are an important topic in scientific and industrial circles. It is

important for achieving the required objectives and standards in production pro-

cesses. Acceptance decisions is a framework of statistical tools and concepts, used

to help decision makers in making an optimal, or at least a good, decision from a set

of alternatives. In this thesis we present Nonparametric Predictive Inference (NPI)

for two acceptance decisions problems in Chapters 2 and 3.

Chapter 2 is focused on acceptance sampling, an important scenario in quality

and reliability applications, where items from a production process are tested in

order to decide whether or not to accept a batch of items. A specific form of such

testing appears when the test result is simply whether or not a tested unit functions,

which is known as ’attribute acceptance sampling’.

We present methods for basic acceptance sampling for attributes, based on

the nonparametric predictive inferential approach for Bernoulli data presented by

Coolen [7], which is extended for this application. We consider both acceptance sam-

pling based on destructive tests and on non-destructive tests. Attention is mostly

restricted to single-stage sampling, but extension to two-stage sampling is also con-

sidered and discussed.

In Chapter 3, sequential acceptance decision problems are considered with the

1
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aim to select one or more candidates from a group, with the candidates observed se-

quentially, either per individual or in subgroups, and with the rank of an individual

candidate compared to previous candidates and those in the same subgroup avail-

able. While, for given total group size, this problem can in principle be solved by

dynamic programming, the computational effort required makes this not feasible for

problems once the number of candidates to be selected, and the total group size, are

not trivially small, as the number of paths to be used in the backward solution al-

gorithm increases exponentially. We present a heuristic approach to such problems,

based on the principles of nonparametric predictive inference, and we study its per-

formance via simulations. We compare our approach to alternative methods. The

approach is very flexible and computationally straightforward, and has advantages

over alternative heuristic rules that have been suggested in the literature.

This study investigates the use of nonparametric predictive inference (NPI) for

acceptance decisions. Section 1.2 is a brief introduction to NPI. Section 1.3 gives a

detailed outline of the thesis.

1.2 Nonparametric Predictive Inference (NPI)

Nonparametric Predictive Inference (NPI) is a statistical inference technique based

on Hill’s assumption A(n) [28]. Hill proposed the assumption A(n) for prediction

about future observations. This assumption was proposed particularly for situations

in which there is no strong prior information about the probability distribution for

a random quantity of interest. Suppose that we have n exchangeable real-valued

observations x1, x2, ..., xn, which can be ordered as x(1) < x(2) < ... < x(n). Let

x(0) = −∞, x(n+1) = ∞ and assume that the probability of ties is zero. These

n observations divide the real-line into n + 1 intervals Ij = (xj−1, xj) where j =

1, 2, ..., n + 1. The assumption A(n) is that the probability that the future random

value Xn+i, for i ≥ 1, will be in interval Ij is 1
n+1

, for each j = 1, 2, ..., n+ 1. Thus

P (Xn+1 ∈ (x(j−1), x(j))) =
1

n+ 1
for j = 1, 2, ..., n+ 1 (1.1)

Augustin and Coolen [3] refered to the statistical inference approach based on
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A(n) as ‘Nonparametric Predictive Inference’ (NPI), as inferences based on A(n) are

predictive and nonparametric. Despite that A(n) is not an adequate assumption

by itself to provide precise probabilities for many events of interest, it can give

predictive probability bounds for one or more future observations, without requiring

any further assumptions about the probability distribution. NPI is based on only

few assumptions, one of which is that the data are exchangeable, thus inferences do

not depend on the ordering of the data.

Lower and upper probabilities generalize the classical (‘precise’) concept of prob-

ability and allow several interpretations. From subjective perspective [43], the lower

(upper) probability for an event can be interpreted as the supremum buying (infi-

mum selling) price for the gamble that pays one if the event occurs and zero else, so

for all prices less than the lower probability one would want to buy the gamble. From

classical perspective, lower and upper probabilities can be interpreted as bounds on

precise probabilities, due to limited information available or the wish not to add fur-

ther assumptions. In this study, as in NPI more generally, the latter interpretation

is used, without further claims in terms of subjective betting behaviour [8]. P (.) and

P (.) denote lower and upper probabilities, respectively. The NPI lower and upper

probabilities for the event Xn+i ∈ B, for i ≥ 1, given the intervals I1, I2, ..., In+1,

where B ⊂ R, are

P (Xn+1 ∈ B) =
1

n+ 1
|{j : Ij ⊆ B}| (1.2)

P (Xn+1 ∈ B) =
1

n+ 1
|{j : Ij ∩B 6= ∅}| (1.3)

The lower probability (1.2) is obtained by summing up only the probability

masses that must be in B, which happens only for the probability mass 1
n+1

per

interval Ij as long as the interval Ij is totally contained within B. The upper

probability (1.3) is obtained by summing up all probability mass that can be in B,

so any probability mass 1
n+1

for interval Ij as long as the intersection of Ij and B

is non-empty. The lower and upper probabilities presented by Coolen [7] fit in the

framework of Nonparametric Predictive Inference (NPI) [3], hence we also call them
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‘NPI lower and upper probabilities’.

As we mentioned, in case there is not much information, one may not wish to

make further assumptions to derive precise probability, so incomplete knowledge

is reflected by imprecision in the lower and upper probabilities. One of the first

developers of theory of imprecise probability was Boole [5]. It has received increasing

attention by several researchers including the development of interval probability

theory. Actually, for any event A, the precise ‘classical’ probability is just a special

case of imprecise probability, when P (A) = P (A), and the case with P (A) = 0 and

P (A) = 1 can be used to represent complete absence of information about event A.

The basic and fundamental concepts of interval probability theory have been pre-

sented by Walley [43] and by Weichselberger [45,46], who generalizes Kolmogorov’s

axioms. Some elements of theory of interval probability as relevant to A(n)-based

inference are presented below.

Interval probability on a space A can be defined as P (A) = [P (A), P (A)], where

0 ≤ P (A) ≤ P (A) ≤ 1 for all A ∈ A. The structure of this model as defined by

Weichselberger [45] is

M = {p|P (A) ≤ p(A) ≤ P (A),∀A ∈ A} 6= ∅

A function P (.) on A is called an F-probability with structureM, if P (.) satisfies

inf
p(.)∈M

p(A) = P (A)

and

sup
p(.)∈M

p(A) = P (A)

for all A ∈ A. According to [3] NPI lower and upper probabilities are F-probabilities.

F-probability leads to some significant consequences, for example, P (A ∪ B) ≥

P (A) + P (B), P (A ∪ B) ≤ P (A) + P (B) and also for simplyfing the calculation of

the imprecise probabilities, for every F-probability the lower and upper probabilities

are conjugate P (A) = 1− P (Ac), where Ac is the complementary event to A.

Recently, NPI has been developed for several problems in statistics, risk and

reliability, and operations research. For example, NPI methods have been applied
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for multiple comparisons of groups of real-valued data, which are of interest for

situations where such comparisons are naturally formulated in terms of comparison

of future observations from the different groups [17], and for precedence testing,

where saving time or costs is considered when comparing different groups [16]. NPI

for Bernoulli random quantities [7] has been applied to several other inferential

problems, including high reliability demonstration [12]. NPI has also been used to

compare m future numbers of successes in Bernoulli trials for different groups, where

the inferences tend to become more imprecise when m increases, while increasing

the number of observations in the data set tends to decrease the imprecision [14].

NPI for Bernoulli quantities is introduced in detail in Section 2.3. Furthermore,

NPI has been applied to problems with multinomial data, using a latent variable

model in the form of a probability wheel. This provides inference even when the

number of outcome categories is not known, including the problem of prediction of

occurrence of new failure modes [10]. Further examples of NPI applications are in the

area of probabilistic safety assessment [9], and comparison and subset selection for

proportions data [13,14]. For more details about NPI see www.npi−statistics.com.

1.3 Outline of thesis

Work described in this thesis covers the use of nonparametric predictive inference

for acceptance sampling and sequential acceptance decision problems. This thesis is

structured as follows. Chapter 2 presents nonparametric predictive methods for ac-

ceptance sampling, starting with an introduction in Section 2.1 and a brief overview

about statistical process control (SPC) in Section 2.2. Section 2.3 introduces NPI for

Bernoulli quantities including some numerical examples. In Sections 2.4 and 2.5 de-

structive tests and non-destructive tests are considered and discussed, respectively.

Section 2.6 considers the application of NPI to two-stage acceptance sampling. We

finish this chapter with some conclusions and remarks in Section 2.7. A paper based

on this work has been published in Journal of Statistical Theory and Practice [15].

Parts of this chapter were presented at the 18th Advances in Risk and Reliability

Technology Symposium: AR2TS [22], and at the 6th International Symposium on
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Imprecise Probability: Theories and Applications: ISIPTA’09.

Chapter 3 addresses the nonparametric predictive approach to the sequential

acceptance problem. We begin this chapter with an introduction in Section 3.1,

then we introduce the NPI method for solving the sequential acceptance problem in

Section 3.2. Section 3.3 gives the application of the NPI method to select only one

candidate. A generalisation is provided in Section 3.4, with more than one candi-

date to be selected. Section 3.5 considers the case of selecting multiple candidates

observed in groups. This is followed by comparative studies between NPI and some

other methods including a fixed-percentage method in Section 3.6, methods that

improve the subset of accepted candidates in Section 3.7 and a randomised selection

procedure in Section 3.8. Section 3.9 gives some concluding and remarks. A paper

based on Chapter 3 is currently in submission and it has been presented at a seminar

at Durham University. Finally, Chapter 4 presents the conclusions of this thesis,

further remarks, and some suggestions for future work.



Chapter 2

Acceptance Sampling

2.1 Introduction

Acceptance sampling is a statistical technique which is widely used to decide whether

or not to accept a batch of products that has already been produced. So, it focuses

on the quality assurance and ignores the production process. Acceptance sampling

for attributes or ‘go, no-go inspection’ is one of the key topics in quality control.

It is a sampling-based inspection method where an item is classified as defective

(‘bad’) or non-defective (‘good’) with respect to a specified quality requirement [34].

In this chapter, we present the application of Nonparametric Predictive Inference

(NPI) to acceptance sampling scenarios, enabled via an extension of the lower and

upper probabilities for Bernoulli random quantities presented by Coolen [7]. The

problem considered is the decision whether or not a batch of products, also called

items, can be accepted, in the sense that it satisfies a quality criterion, on the basis

of tests of some items. We mostly restrict attention to testing of a single sample, but

we also investigate the development of NPI for sequential sampling by considering

two-stage sampling.

Throughout this chapter we assume that testing is perfect, and that it simply

reveals whether a tested item functions or not. We distinguish between destructive

testing, where tested items cannot be used again, and non-destructive testing, where

tested items can be used again after testing and are then assumed to have the same

condition as was revealed during testing. In the latter situation, we will assume that

7



2.2. Statistical Process Control (SPC) 8

the items tested are sampled from within the batch considered, but in the case of

destructive testing it is more natural to assume that the items tested are not sampled

from the batch for which the acceptance decision is required. Throughout we assume

exchangeability of all items with regard to their functioning, so exchangeability of

all the tested items and of those items in the batch under consideration which have

not been tested.

We begin this chapter by briefly reviewing statistical process control (SPC) in

Section 2.2. In Section 2.3 we review NPI for Bernoulli quantities [7], and we present

an extension that is relevant for acceptance sampling. The justification of this new

result is given in the Subsection 2.3.1. In Section 2.4 we apply NPI to acceptance

sampling with destructive tests and in Section 2.5 to acceptance sampling with non-

destructive tests. Section 2.6 provides an exploration of NPI for acceptance sampling

over two stages, where first some items are tested, followed by the decision to either

accept the whole batch, to reject it, or to continue sampling and only take the final

acceptance decision after the items of the second sample have been tested. Some

concluding remarks are given in Section 2.7.

2.2 Statistical Process Control (SPC)

The term ‘quality’ is always associated with an excellent service or product that

meets the minimum requirement of the consumer. The person who is responsible for

quality starts with determining the customer requirements and then the production

process goes on until the product is satisfactory to the customer. From a technical

point of view, ‘quality’ is a group of properties or specifications of a product, which

together guarantee to satisfy the needs of customers [36]. This can be achieved only

with certain requirements, standards or specifications.

Quality control is a practice which has been known since the early days of man-

ufacture. However, given the current industrial development worldwide and the

complexity of production procedures, the examination and testing of many products

and services has become an inevitable process. For example, deviations from a pro-

duction plan are very common and have negative effects on the product. However,
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the main problem is that no one can predict these deviations, as things sometimes

may get out of control all of a sudden. Consequently, it has become a necessity

that production procedures should be very closely monitored. Hence in order to

achieve the required competence of the system, technical deviations need to be kept

at a minimum. This can be achieved through the use of Statistical Process Control

(SPC), which involves taking the necessary measurements to help decision makers

decide whether or not the production process is going as planned.

In 1924 W.A. Stewart, who worked for Bell Telephone Laboratories in the US,

established a statistical chart to control the different variables in the production

process. This chart constituted the basis of Statistical Quality Control (SQC).

Then later on H. F. Dodge and H. G. Roming developed the process of Acceptance

Sampling as an alternative to full examination procedures. SQC constitutes one of

the branches of quality control procedure, which involves the acquisition, analysis

and interpretation of data to be used in the process of quality control [34, 36].

This chapter however, focuses on the statistical approach to acceptance sampling

for attributes as a means for quality control, and this approach constitutes only a

small part of the quality control spectrum.

In most production processes, it is impossible to produce two items which are

exactly identical. This is consistent with the natural fact that elements of the

same group are not exactly identical. Yet, the differences between elements may be

unnoticeable. Variation in production is always unavoidable due to factors such as

variation of equipment, materials, production environment and manpower. As long

as these variations exist in a natural and consistent manner, one should expect a

number of chance causes or variations to happen. When the causes for variation are

significantly large these can be identified as assignable causes. When all causes, apart

from chance causes, are eliminated the process is said to be under statistical control,

as it will be stable and predictable. By contrast when the causes for variation are

specific, this may lead to excessive variation in which case the process is described

as being out of control, going beyond the expected limit of variation [34,36].

SPC is applicable to many production processes. It can help us to make a

reliable assessment of the process, to determine the statistical process control limits,
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to judge whether or not the process is out of control and to provide a process

for early warning systems. Some researchers defined SPC in different ways. For

example, Woodall and Montgomery [48] and Dale [18] defined it as a part of the

field of statistical quality control consisting of several statistical methods and tools

used to understand, adjust and monitor the performance of operations. Gaafar and

Keats [24] defined SPC as a method that is used to monitor, evaluate and analyse

the process to the continuous improvement of quality, reliability and service, by

reducing the variations in operations. Furthermore, according to the definition by

Goetsch and Davis [26], SPC is a statistical tool used to separate the variations

due to special reasons of natural differences, or in general to eliminate the causes

of the variations, in order to achieve and establish consistency and compatibility of

the output of processes. Dale [18] summarised the fundamental aims for SPC as

follows: to stabilize the process, to improve and reduce the variations in the output

processes, to evaluate the performance of processes and to provide information about

the processes to assist management in decision-making.

One issue to be considered in SPC is when the process should be stopped accord-

ing to some quality specifications. In some cases one needs to determine whether the

observed variation in quality exceeds the expected and acceptable level of variation.

This is where control charts fit in to help with the analysis and presentation. Such

charts represent an important tool in SPC, as they tend to assist decision makers

to judge whether or not the production process is stable. This judgement is usu-

ally made in relation to two lines representing the upper and lower control limits

(UCL and LCL, respectively), which help in detecting any significant variation in

the quality of the product within the limits allowed for every single product.

In many cases qualitative or quantitative data may be involved to investigate

the quality of a certain product. In this regard the term attribute may be used in

relation to quality control. This term usually refers to product characteristics and

specifications, and whether these specifications meet the potential requirements of

consumers. Such quality characteristics are normally not quantitative, but they are

attributes which can be described as either conforming or non-conforming to some

requirements. Control charts for quantitative variables are not used in case where
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the use of attribute is important for quality control. Hence, the control charts usually

used in this type of quality characteristics are called control charts for attributes

[34, 42].

One of the most important areas of quality control and improvement is inspection

sampling or acceptance sampling for attributes. Ensuring the quality of deliveries

(orders) which arrive at a company is important and necessary for the quality of the

final product. This is achieved by examining the quality of the supply (so a process

of assessing quality). It is also used in the last stages of production for inspection

on the quality of the final product before marketing to the consumer. In brief, it

can be said that acceptance sampling is the process of examination and inspection

for quality of the materials entering a company, as well as the final product.

This field of quality control has two different classifications: acceptance sampling

plans for variables and plans for attributes, depending on whether the quality is

measured numerically or not. This study will focus on inspection sampling for

attributes. In order to examine the batch of attributes there are several acceptance

sampling plans. First, a single sampling plan can be used. This considers results

from a single test. Secondly, double sampling plans were invented to give a batch

another chance, where if the results of the first sample are not conclusive with regard

to accepting or rejecting the batch, a second sample is selected. Thirdly, multiple

sampling plans can be used, generally both double and multiple plans are just an

extension of the single-sampling plan. In addition, double-sampling and multiple

sampling programs can be repeated, and also sequential sampling plans can be

used [34,36,42].

Inspection sampling or acceptance sampling for attributes implies the initial de-

termination of the units of the sample from each batch, which will then be examined

according to the required specifications. If the number of nonconforming units is

less than a certain limit the sample will be accepted, otherwise the sample will be

rejected on the grounds that it deviates from the ideal sample.

However, acceptance sampling for attributes, also called lot by lot sampling or

‘go, no-go’ method, is usually used in the following two situations. In cases where

the test targets defective samples for purposes of destruction (such as testing the
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earth wire in electricity or safety airbags in vehicles), the importance of sampling

increases from the fact that defective samples will be destroyed straight away. Also,

when comprehensive examination of the units in question is expensive, or if the

process is laborious or time consuming, lot by lot sampling is used.

From the foregoing, it can be seen that the sampling process may be economi-

cally feasible as it saves time and effort, also it tends to reduce the defective units

in the accepted batch. Ihe process of sampling may involve some risks such as ac-

cepting defective batches or rejecting valid batches. Moreover, the sampling process

does not guarantee that all samples in the batch meet the required specifications.

Acceptance sampling always implies a conflict of interest between the consumer and

producer. The Operating Characteristic curve, or the OC curve, is often used in

quality control to determine the probability of accepting production lots when using

different sampling schemes. The ideal sampling plan can be obtained when the OC

curve develops to a vertical straight line, which satisfies the requirements of both

the producer and consumer. This ideal curve however, could be obtained only when

all the units have been comprehensively tested. Hence given the above mentioned

problems associated with comprehensive testing, it could be maintained that ob-

taining the ideal OC curve could be a very difficult, if not impossible, task in most

cases [34].

It is obvious that the sampling process is always associated with some hazards

such as the hazard of rejecting good batches. The producer’s risk is always associ-

ated with an index defining the qualified batch referred to as Acceptance Quality

Level (AQL). The AQL actually indicates the deviation from the ideal sample in

terms of percentage, and this percentage could be reasonable for the purpose of

acceptance sampling. The consumer’s risk is also associated with an index defin-

ing the disqualified batch, better known as the Limiting Quality Level (LQL). The

LQL is defined as the percentage deviation from the specification as required by the

consumer, which reduces the chances of acceptance of the product by consumers.

Finally it is worth mentioning that both AQL and LQL can be determined by the

OC curve. Generally, the Operating Characteristic curve describes the probability

of accepting a batch as a function of the batch’s quality. This chapter focuses on
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acceptance sampling for attributes, which is a special problem and does not use all

these concepts. It will be an interesting challenge to link NPI to these concepts.

Recently, nonparametric predictive inference has been used in the field of SPC.

Arts, Coolen and van der Laan [2] introduced a control chart called ‘extrema chart’

that uses NPI to decide whether the process is in control or not. These extrema

charts are a generalisation of control charts presented by Willemain and Runger [47].

Both methods coincide if the attention is restricted to only one future observation

m = 1. Arts, Coolen and van der Laan [2] presented one-sided extrema charts which

can be created by using the minimum or the maximum of m future observations.

Two-sided extrema charts can also be created by using the minimum and maximum

m future observations together. Whether or not a process is in a state of statistical

control depends on the fact that any shift in the under study process leads to a

larger minimum or a smaller maximum observation than expected on the basis

of a reference set. Simulation studies showed that the extrema charts gave good

performance compared to the well known X̄ and CUSUM charts. Due to the fact

that NPI is based on A(n) assumption, and inferences based on A(n) are predictive

and nonparametric, enabled by the use of lower and upper probabilities to quantify

uncertainty, it is worth to use the extrema charts for the advantage that it does not

require any prior information about the production process apart from the reference

set.

Arts and Coolen [1] introduced two NPI-based control charts, namely control

charts using order statistics and subsequent sampling charts as an attractive al-

ternative control charts. These NPI control charts use other order statistics and

require a larger reference set, but they are good alternative tools to the extrema

charts because they avoid the condition that a false signal occurs only if the whole

sample exceeds the control limit. For the new charts using order statistics the signal

occurs if a part of the sample exceeds the control limit. They also presented control

charts which use subsequent samples, where the authors paid attention only to the

case of m = 1. This type of control charts reveals the small shifts in the process

more quickly than the extrema charts and the subsequent sampling charts, and it

does not require a large reference set.
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2.2.1 Formation of batches

The formation of batches could affect the sampling plan. For example, the batches

should be homogenous, which means that all the products included by the batch

under investigation should be produced by the same machine, the same manpower,

and all other equipments should be the same and so on. Also, big batches are

preferable.

A batch of items can be inspected in several ways. The sampling procedure may

consist of selecting a single sample, or it may be done in two or more steps.

2.2.2 Single sampling plans for attributes

The single plan involves a single sample of the batch and the decision of rejection

or acceptance of the whole batch is made on the results of testing this sample. A

random sample of size n is taken from a homogeneous batch of size N and the sample

acceptance number C is the required number of items to reject or accept the batch.

For example, the batch is accepted only if the number of defect items in n is not

more than C, otherwise we reject the batch.

The Operating Characteristic (OC) Curve

In general, the operating characteristic (OC) curve constitutes a popular method of

evaluation for production batches. For judging a specific sampling plan it is prefer-

able to know that a certain batch with a certain percentage of failed or nonconform-

ing items is likely to be accepted or rejected. This curve shows the probability of

accepting the provided batch and the batch percentage of the failed items. So, the

OC curve illustrates the ability of sampling plans to distinguish between accepting

and rejecting a questionable batch and it also gives the relationship between the

batch acceptance probability and its quality. Despite of these advantages the OC

curve cannot deal with the uncertainty or in the case of extremely vague a priori

knowledge about the form of the underlying distribution, but NPI can provide pre-

dictive probability bounds without making an assumption about the distribution

that the data have come from.
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Suppose that we have a large batch of size N items and a random sample of size n

items is inspected. It is assumed that the batch has been chosen from a continuous

production flow which can be considered infinite. Hence a binomial distribution

can be used in the calculations. The number of defective units D is binomially

distributed with parameters n and p, where p is the fraction of defective units in

the batch. In this case,

P (D = d) =

(
n

d

)
pd(1− p)n−d (2.1)

and the probability of acceptance of the batch is

P (D ≤ C) =
C∑

d=0

(
n

d

)
pd(1− p)n−d (2.2)

To explain the idea, suppose that we have a random sample of size n = 89, the

batch fraction defective is just one percent p = 0.01 and we will accept the batch if

there are 2 or fewer defectives items, so C = 2. According to these information the

probability of acceptance of the batch is

P (D ≤ 2) =
2∑

d=0

(
89

d

)
(0.01)d(0.99)89−d = 0.939

Dodge [20] suggested the ‘chain sampling plan’ or ‘ChPS-1’ as an alternative plan

when inspection is costly or destructive for situations where small sample sizes and

a zero-acceptance number C = 0 are desired. As when C = 0 the OC curve for the

single sample plan is inappropriate tool, as it has no point of inflection and hence it

drops dramatically even for any small increase in the fraction failure items. Dodge

uses prior information of the previous batches as the method uses cumulative results

of several samples in making a decision about the current batch. The procedure of

the chain sampling plan is, if the sample has 0 failure items, accept the batch; if

the sample has 2 or more failure items, do not accept the batch; and if the sample

has 1 failure item, it may be accepted provided that there are 0 failure items in the

previous i samples of size n.

2.2.3 Double-sampling plans

Double sampling plans are more complex. The decision will be taken on the basis

of testing of a preliminary sample to either accept the whole batch, reject the whole
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batch or to continue the test with another sample. In other words, if the quality

is excellent the first test will be sufficient and the batch will be qualified, but if

the results of the test show a very poor quality the whole batch will be rejected

and no further tests are made. However, a second test is essential in case of a

moderate quality, i.e. neither very poor nor very good. In cases where another

sample is necessary the result of the tests of the first and second samples are used

simultaneously for making the decision for acceptance or rejection of the batch.

So, it is an extension method of single sampling plans. The double-sampling plan

is determined by five numbers: n1 is the sample size of the first sample; C1 is

the acceptance number of the first sample; R1 is the rejection number of the first

sample; n2 is the sample size of the second sample; C2 is the acceptance number for

the combined samples. To illustrate the plan, suppose a random sample of n1 units

is taken from a specific batch. This sample has D1 defective items, and if
D1 ≤ C1 the batch is accepted on the first sample

D1 > R1 the batch is rejected on the first sample

C1 < D1 ≤ R1 a second sample of size n2 is selected

In the last case, n2 further items are taken from the batch. Let D2 be the number

of defective items in the second sample. If the total number of defective items in

the combined samples, D1 +D2, is not more than C2, the whole batch is accepted,

while the batch is rejected if D1 +D2 is greater than C2.

A double-sampling plan has some advantages and disadvantages. The main

advantage of a double-sampling plan is that the total amount of required inspection

could be reduced. Moreover, it could give a batch a second chance. This feature has

been called ‘the psychological advantage’ [34].

The multiple sampling plan is a continuation of the dual sampling plan procedure.

In case of multiple sampling it is preferable to select three, four, five or even more

samples but the size should be small. Since the same procedure is followed as in

the dual sampling plan, the multiple sampling plan can be used with any number of

stages, with the possibility that the whole batch can be sampled before a decision

is made.

It is possible that the same results could be obtained by any of the three types
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of sampling plans above. The choice of the type of plan for testing a certain unit

can depend on factors other than its effectiveness. These factors include simplicity,

costs of management, available data, the number of units to be examined, and

psychological impact. However, since simplicity is the most important factor, it

follows that individual sampling is the most favourable while multiple sampling is

the least favourable.

2.3 NPI for Bernoulli quantities

Coolen [7] presented NPI lower and upper probabilities, also called ‘imprecise prob-

abilities’ [43] or ‘interval probability’ [45, 46], for prediction of Bernoulli random

quantities. These lower and upper probabilities followed from an assumed underly-

ing latent variable model similar to Bayes’ original representation [4,7], yet without

a prior distribution, with future outcomes of random quantities related to data by

Hill’s assumption A(n) [28, 29].

In this section, we summarize results from [7] on NPI inference for Bernoulli ran-

dom quantities. We refer to [7] for justifications, which are based on a latent variable

representation of Bernoulli quantities as real-valued outcomes of an experiment sim-

ilar to that used by [4], with Hill’s assumption A(n) [28, 29] used to derive direct

predictive probabilities [19] for future observations using available data. In short,

Hill’s assumption A(n) for real-valued random quantities is that a future observation

will fall into each interval on the real line, as created by the first n observations, with

equal probability 1/(n + 1). Due to the use of A(n) in deriving the NPI lower and

upper probabilities, they fit in a frequentist framework of statistics but can also be

interpreted from Bayesian perspective [29, 30]. For further discussion of properties

of NPI see [3].

Suppose that we have a sequence of n + m exchangeable Bernoulli trials, each

with ‘success’ and ‘failure’ as possible outcomes, and data consisting of s successes

in n trials. Let Y n
1 denote the random number of successes in trials 1 to n, and Y n+m

n+1

the random number of successes in trials n + 1 to n + m. Let Rt = {r1, . . . , rt},

with 1 ≤ t ≤ m + 1 and 0 ≤ r1 < r2 < . . . < rt ≤ m, and, for ease of notation, let
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us define
(
s+r0
s

)
= 0. Then the NPI upper probability [7] for the event Y n+m

n+1 ∈ Rt,

given data Y n
1 = s, for s ∈ {0, . . . , n}, is

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) =

(
n+m

n

)−1 t∑
j=1

[(
s+ rj
s

)
−
(
s+ rj−1

s

)](
n− s+m− rj

n− s

)
(2.3)

The corresponding NPI lower probability [7] can be derived by

P (Y n+m
n+1 ∈ Rt|Y n

1 = s) = 1− P (Y n+m
n+1 ∈ Rc

t |Y n
1 = s) (2.4)

where Rc
t = {0, 1, . . . ,m}\Rt. This relation between these upper and lower proba-

bilities is justified by [7], and agrees with the fact that these are F -probabilities in

Weichselberger’s theory of interval probability [3, 45,46].

More general results, for events (Y n+m
n+1 ∈ R|Y n

1 ∈ S) for general sets R and S

are being developed, together with study of foundational properties for statistical

inference using lower and upper probabilities on the basis of such set-valued data.

For the acceptance sampling application in this chapter, we need to extend the re-

sults from [7] to the event (Y n+m
n+1 ≥ r|Y n

1 ≥ s), as explained in Subsection 2.3.1.

Using the information Y n
1 ≥ s instead of a precise value for Y n

1 is important at

the stage where we define the procedure, which is done by specifying the minimum

number of successes in the test for which a batch will be accepted. For such events,

the NPI lower and upper probabilities are given below, followed by a brief expla-

nation of the derivation of these results. The NPI lower probability for the event

(Y n+m
n+1 ≥ r|Y n

1 ≥ s) is, for 0 ≤ s ≤ n and 0 ≤ r ≤ m,

P (Y n+m
n+1 ≥ r|Y n

1 ≥ s) =

(
n+m

m

)−1 m∑
j=r

(
s− 1 + j

j

)(
n− s+m− j

m− j

)
(2.5)

and the corresponding NPI upper probability is always equal to 1, so

P (Y n+m
n+1 ≥ r|Y n

1 ≥ s) = 1 (2.6)

To put these forms (2.5) and (2.6) more simply, the lower probability (2.5) is

derived by counting the number of orderings out of the
(
n+m
m

)
orderings as explained

in Subsection 2.3.1, for which Y n
1 ≥ s must be followed by at least r successes in

m future trials, and the upper probability is the number of orderings for which

(Y n
1 ≥ s) can be followed by (Y n+m

n+1 ≥ r).
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2.3.1 NPI lower probability for acceptance sampling

Let us give a brief explanation of the derivation of the NPI lower and upper proba-

bilities (2.5) and (2.6). The explanation below builds directly on the approach and

results for NPI for Bernoulli random quantities presented by [7], where the data

are restricted to a known number of successes in n trials, so Y n
1 = s, while in this

study the generalization to information of the form Y n
1 ≥ s is presented and used in

Sections 2.5, 2.6 and 2.7.

Throughout, interest is in the number of successes in m future trials, with in-

formation on the number of successes in n past trials. In NPI for Bernoulli random

quantities [7], past observations are related to future random quantities via an as-

sumed underlying latent variable representation, such that each value is represented

by a point on the real line, with a threshold such that all points to one side of

the threshold represent ‘successes’, and all points to the other side of the threshold

represent ‘failures’. No knowledge about this threshold is assumed. This represen-

tation is very similar to that used by Bayes [4], with the exception that Bayes made

explicit assumptions on the threshold, which in the later development of Bayesian

statistical methodology corresponded to the assumption of a prior distribution.

In NPI, with the latent variable representation, past observations are related to

future observations via Hill’s assumption A(n) [28, 29]. Suppose that the ordered

values of the latent variables corresponding to the n observations are u(1) < u(2) <

. . . < u(n). These n values define a partition of the real line, consisting of n + 1

intervals. Hill’s assumption A(n) states that a future random quantity Un+1 has

equal probability 1/(n+ 1) to be in each of these intervals. In our NPI setting this

Un+1 is the latent variable corresponding to the first future observation, which will

again be a success or failure, depending on which side of the threshold Un+1 is. When

interested in m future observations, as we are in this study, the same assumption

needs to be made for each future observation consecutively, so one needs to assume

A(n), . . . , A(n+m−1). In fact, assuming A(n+m−1) is sufficient, as Hill [28] shows that

the assumption A(n) implies A(k) for all k ≤ n. Under these assumptions, the

following result holds [7,28]. Suppose that there is no interest in precisely which of

the first n observations are successes or failures, so that one considers the number
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of successes as a sufficient statistic, and the same is assumed for the m future

observations of interest. Then all
(
n+m
n

)
different orderings of the underlying latent

variables on the real line, which represent the first n observations and the m future

observations, have the same probability, also after information about the number

of successes in the first n observations has become available. Denoting these
(
n+m
n

)
different orderings by Oj, for j = 1, . . . ,

(
n+m
n

)
, the lower and upper probabilities

(2.5) and (2.6) are derived by counting orderings, in the same manner as in [7]: for

the lower probability, only those orderings are included for which Y n
1 ≥ s has to be

followed by Y n+m
n+1 ≥ r, while for the upper probability all orderings are included for

which Y n
1 ≥ s can be followed by Y n+m

n+1 ≥ r.

Let us first consider the NPI upper probability P (Y n+m
n+1 ≥ r|Y n

1 ≥ s), for which

we count all orderings Oj of the n + m latent variables on the real line for which

Y n
1 ≥ s can be followed by Y n+m

n+1 ≥ r. The information Y n
1 ≥ s does not exclude the

possibility that the threshold between latent variable representations of successes

and of failures lies, effectively, at infinity (assuming that a success is represented by

a latent variable to the left of the threshold), in which case all m future observations

would also be successes. Therefore, each ordering Oj is included in the count, and

hence this upper probability for the event Y n+m
n+1 ≥ r given Y n

1 ≥ s is equal to one.

This also agrees with the intuition that, if we only know that there are at least

s successes in the first n observations, it is not logically excluded that the process

considered will only give successes, never failures. As mentioned in this chapter, this

upper probability is of little further interest in applications of NPI to acceptance

sampling.

The NPI lower probability P (Y n+m
n+1 ≥ r|Y n

1 ≥ s) is more interesting, it is deter-

mined by counting the orderings Oj of the n + m latent variables on the real line

for which Y n
1 ≥ s must be followed by Y n+m

n+1 ≥ r. Assume again that a success is

represented by a latent variable to the left of the threshold. Any ordering for which

this is the case, must be such that r of the m latent variables representing future

observations are to the left of the s-th ordered latent variable representing the first

n observations (u(s) in the notation used above). A direct counting argument now

leads to the lower probability (2.5). Reasoning in an alternative manner provides
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important further insight. When considering the representations of the Bernoulli

random quantities by latent variables on the real line, with a threshold such that

points to the left of the threshold represent ‘successes’ and to its right represent

‘failures’, it is clear that for each ordering Oj for which s successes in the first n

values must be followed by at least r successes in the future m observations, it is

necessarily the case that i successes in the first n values, for every i ≥ s, also must

be followed by at least r successes in the future m observations. This suggests, for

NPI for Bernoulli random quantities, that the following relation holds,

P (Y n+m
n+1 ≥ r|Y n

1 ≥ s) = P (Y n+m
n+1 ≥ r|Y n

1 = s)

This is indeed the case, as can be confirmed directly from (2.3), (2.4) and (2.5).

Clearly, for the NPI upper probability discussed above, we similarly have

P (Y n+m
n+1 ≥ r|Y n

1 ≥ s) = P (Y n+m
n+1 ≥ r|Y n

1 = n) = 1 (2.7)

Example 2.1

Suppose that we have 2 past trials (n = 2) and we are interested in the number

of successes in 3 future trials (m = 3). In this case we have
(
2+3
3

)
orderings as

explained in Figure 2.1. According to the explanation above, let us assume that the

left side represents the ‘successes’ (S), the right side represents the ‘failures’ (F). We

are interested in the events (Y 5
3 ≥ r|Y 2

1 ≥ s), the NPI lower and upper probabilities

for these events are presented in Table 2.1. If we are interested in having at least

1 success in the future 3 items, so r ≥ 1, given at least 1 success in the first two

checked items, so s ≥ 1, then the threshold can be anywhere in the intervals I2 or

I3. For the lower probability for this event, only in the first 6 orderings Y 2
1 ≥ 1 must

be followed by Y 5
3 ≥ 1, thus P = 6

10
, while all orderings can be followed by Y 5

3 ≥ 1,

so the upper probability is equal to one. The other lower and upper probabilities in

Table 2.1 are derived by similar arguments.
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Figure 2.1: Orderings for n = 2 and m = 3

r s = 0 s = 1 s = 2

P P P P P P

0 1 1 1 1 1 1

1 0 1 0.6 1 0.9 1

2 0 1 0.3 1 0.7 1

3 0 1 0.1 1 0.4 1

Table 2.1: NPI lower and upper probabilities for (Y 5
3 ≥ r|Y 2

1 ≥ s)
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2.4 Acceptance sampling with destructive tests

In this section, the use of NPI for acceptance sampling for quality control for at-

tributes is explored. Assume that items are either good (‘success’) or bad (‘failure’)

and that they can be tested in a perfect manner, that is a test reveals with certainty

whether an item is good or bad. This test might destroy the item, so a tested item

cannot be used thereafter, or it may be possible to use a tested item again. In

this section, we assume that tested items cannot be used any further, which is also

called ‘destructive testing’. The alternative of ‘non-destrictive testing’ is considered

in Section 2.5.

Suppose that per unit of time considered, say e.g. per day, one wishes to produce

m > 0 items for delivery to the market, and in addition one also produces the number

required to be tested during that day. Suppose, in line with notation above, that

one tests n items on a day (so one would actually produce n+m items that day), of

which Y n
1 are good. On the basis of the outcome of this test, one wishes to decide on

whether or not to ‘accept’ the m further items produced that day. Let us suppose

that one chooses the following criterion, where Y n+m
n+1 is the random total number of

good items out of the m units that are produced that day but that are not tested

(so Y n+m
n+1 ∈ {0, 1, . . . ,m}).

The question considered is how many items should be tested, and how many of

these should be good, in order to meet a suitable quality requirement. Assume the

following quality requirement is used for a batch of m units

P (Y n+m
n+1 ≥ r|Y n

1 ≥ s) ≥ p (2.8)

where r and p are chosen in line with the required quality. So the number of items

to be tested is n, and the minimum number of these which must function is s.

The main question of acceptance sampling is to determine pairs (n, s) for which

this criterion is satisfied, given m, r and p. Typically, the quality criterion must

be set prior to testing, and this might involve cost considerations and negotiation

between producer and consumer. It is important to emphasize that, at the stage

prior to testing when the quality criterion must be set, it is logical to consider the
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lower probability (2.8), that is with conditioning on Y n
1 ≥ s. This is because if one

sets a minimum number s of good items in n tests, in order to decide to accept the

batch, then it implies logically that one would also accept the batch if the actual

number of good items was larger than s.

The criterion (2.8), with the NPI lower probability (2.5), does not provide a

general closed-form expression for solution pairs (n, s), so the discussion in this

section is mostly based on numerical examples. Of course, pairs (n, s) for which

this criterion is satisfied are easily computed as numerical calculation of the lower

probability (2.5) is straightforward. Explicit solutions can only be derived for some

special cases. For example, suppose that one would demand very high quality,

in the sense that tests revealing any failures would lead to rejection of the batch,

which leads to the requirement that s = n. If, simultaneously, one sets r = m in

the criterion (2.8), then the required sample size n has to satisfy n ≥ pm
1−p , while for

r = m−1 this criterion is satisfied if n ≥ 1
2
−m+

√
m2−m
1−p + 1

4
. For the situation with

s = n−1 and r = m, so where one would accept the sample if testing revealed zero or

one failures, but with the explicit quality criterion on the lower probability for zero

failures in the m further items, criterion (2.8) is satisfied if n ≥ 1
2
+ pm

1−p+
√

pm2

(1−p)2 + 1
4
.

These three cases are briefly illustrated in Example 2.3, together with a few related

cases for which no analytic expressions were derived, hence for which the minimum

required sample sizes were determined numerically.

Example 2.3

Suppose one requires m = 10 items for future use, and wishes to test n other items,

which are exchangeable with those 10 items, in order to satisfy the quality criterion

(2.8) with p = 0.8. Suppose that one really requires all 10 future items to function,

so one sets r = 10. If one decides to only accept the 10 items if the sample of size n

contains only good items, so one sets s = n, then the minimum required sample size

is n = 40. If one decides to also accept the batch of 10 items if one out of the n tested

items is faulty, so one sets s = n− 1, while keeping r = m = 10, then the minimum

required sample size is n = 86, whereas even accepting the batch if two of the n

tested items are faulty in the same situation leads to minimum required sample size
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n = 131. If, however, one relaxes the quality criterion by setting r = m− 1 = 9, so

one accepts that one of the 10 items for future use could be faulty, still with p = 0.8,

and one decides to only accept these 10 items if all items tested are good (s = n),

then the minimum required sample size is n = 12. These figures are also presented

in Table 2.3, together with minimum required sample sizes for some more related

cases, including different values of p in the criterion (2.8). Tables 2.2, 2.4 and 2.5

present similar results for the cases m = 5, m = 15 and m = 20, respectively. These

tables clearly show that these inferences are strongly influenced by choice of p, in

particular for values of p close to 1 very large numbers of items must be tested. They

also indicate that the minimum required sample sizes are nearly linear as function

of m for all situations.

In most acceptance sampling situations, the idea is to sample a few items to

decide on acceptance of many items. The NPI approach to acceptance sampling

requires a large number of items to be tested, this is because the criterian used is

actually aimed at achieving very high quality based on strong evidence from the

test data only. In the NPI approach the required sample size n can be smaller if we

allow more failed items in the future items. For example, see Table 2.2, if we want

all the future items to function well, so r = m = 5, and if one sets s = n with the

highest considered quality requirement, p = 0.99, then at least 495 items have to be

tested and all must function well. If we allow one nonfunctioning item in the future

batch, so r = 4, then the number of items to be tested becomes much smaller, with

72 items as a minimum required sample size. Additionally, if we doubled the batch

size to m = 10, as in Table 2.3 and keeping p = 0.99, at least 990 items have to be

tested if one requires all future items to be good with s = n and p = 0.99, whereas

at least 86 items have to be tested if 1 future item is allowed to fail. Similar results

can be clearly seen in Tables 2.4 and 2.5.
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p s = n s = n− 1 s = n− 2 s = n s = n− 1 s = n s = n− 1

r = 5 r = 5 r = 5 r = 4 r = 4 r = 3 r = 3

0.50 5 13 21 2 5 1 3

0.70 12 27 41 4 9 2 5

0.80 20 43 66 6 12 3 6

0.90 45 93 141 10 19 5 9

0.95 95 193 291 16 30 7 13

0.98 245 493 741 28 50 11 19

0.99 495 983 1491 41 72 15 25

Table 2.2: Minimum required sample sizes n with m = 5

p s = n s = n− 1 s = n− 2 s = n s = n− 1 s = n s = n− 1

r = 10 r = 10 r = 10 r = 9 r = 9 r = 8 r = 8

0.50 10 25 40 4 10 3 7

0.70 24 52 81 8 18 5 10

0.80 40 86 131 12 25 7 13

0.90 90 186 281 21 40 11 20

0.95 190 386 580 33 62 16 28

0.98 490 986 1481 58 104 25 42

0.99 990 1986 2981 86 153 33 56

Table 2.3: Minimum required sample sizes n with m = 10

p s = n s = n− 1 s = n− 2 s = n s = n− 1 s = n s = n− 1

r = 15 r = 15 r = 15 r = 14 r = 14 r = 13 r = 13

0.50 15 37 59 6 15 4 10

0.70 35 78 120 12 26 7 15

0.80 60 128 196 18 37 10 20

0.90 135 278 421 32 61 17 31

0.95 285 578 871 51 94 24 42

0.98 735 1478 2221 88 159 38 65

0.99 1485 2978 4471 131 233 51 86

Table 2.4: Minimum required sample sizes n with m = 15
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p s = n s = n− 1 s = n− 2 s = n s = n− 1 s = n s = n− 1

r = 20 r = 20 r = 20 r = 19 r = 19 r = 18 r = 18

0.50 20 49 78 9 20 5 13

0.70 47 103 160 17 35 10 21

0.80 80 170 261 25 49 14 27

0.90 180 371 561 43 81 22 41

0.95 380 771 1161 68 126 33 58

0.98 980 1971 2961 119 213 51 88

0.99 1980 3971 5961 176 312 70 116

Table 2.5: Minimum required sample sizes n with m = 20

2.5 Acceptance sampling with non-destructive tests

In Section 2.4, items tested could not be used again. In this section, we consider

the NPI method for acceptance sampling in situations where items that have been

tested can be used again. We assume as before that tests are perfect, in that they

reveal with certainty if a tested item is good or bad, and that good (bad) items

remain good (bad). Suppose we have a batch of items of total size t, and our quality

criterion will be based on the requirement that at least v of these t items should

function. The question is again how this requirement should be specified, prior to

testing taking place. To link this setting to the notation used before, we will again

determine the test sample size n and the minimum number s of these tested items

that have to be good. This leaves m = t− n items untested, of which we require at

least r = v−s to be good with a chosen minimum value p of the corresponding lower

probability. The quality criterion that we set for this situation is, with 0 ≤ s ≤ n ≤ t

and 0 ≤ r ≤ t− n,

P (Y t
n+1 ≥ r|Y n

1 ≥ s) ≥ p (2.9)

The key difference with the quality criterion (2.8) for destructive testing is that the

number of items which are not tested is not a constant, but decreases if the number

of items tested, n, increases, as their sum is constant. Clearly, if all items in the

batch have been tested, so n = t, there is no uncertainty left about the total number
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of good items. This criterion (2.9), combined with the NPI lower probability (2.5),

leads to the requirement that (n, s) are chosen such that(
t

n

)−1 t−n∑
j=r

(
s− 1 + j

j

)(
t− s− j
t− n− j

)
≥ p (2.10)

Requirement (2.10) does not generally lead to a simple closed form expression for

the sampling schemes (n, s) that satisfy quality criterion (2.9). However, for one

particular situation this criterion leads to an interesting result, namely when we

want all items in the batch to be good, hence we set s = n and r = m = t− n. For

this extreme requirement, criterion (2.8) implies that the minimum required sample

size should satisfy

n ≥ pt (2.11)

so at least proportion p of the total batch must be tested, and obviously none of

these is allowed to fail for this criterion to be met. This result is easily derived from

(2.10), but also follows from the fact that the NPI lower probability for item k+1 to

be good, given all k items tested before are good, is equal to k/(k+1), and applying

this with sequential conditioning (so for k from n to t−1) on items being good leads

to the NPI lower probability for the event that the next t − n items are all good,

given that the first n items were good, to be equal to
∏t−n−1

l=0
n+l

n+l+1
= n

t
. Clearly,

for this lower probability to be at least p, we require minimum sample size pt. We

consider this to be a nice result, which is particularly elegant when the possible

interpretation of lower probability in terms of betting behaviour is considered (see

Section 1.2). For example, let us consider a batch of size t = 100. According to

this NPI approach when combined with the betting behaviour for lower and upper

probabilities, one would be willing to pay up to p for the gamble which pays 1 if all

items in the batch are good and 0 otherwise, if 100p items have been tested and these

were all good. From this perspective, also note that on the basis of any n ≥ 1 tests

which are all good, one would never bet against all t items being good according to

the NPI theory. This is also nicely in line with the possible interpretation of lower

probabilities as representing evidence in favour of the event considered, whereas

upper probabilities represent evidence against this event.
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Example 2.4

Table 2.6 presents minimum required sample sizes for non-destructive testing of

items from a batch of total size t = 100, and with high quality criteria to be satisfied,

in the sense that zero (s = n, r = 100 − n), one (s = n − 1, r = 100 − n; or

s = n, r = 99 − n), two (s = n − 2, r = 100 − n; or s = n − 1, r = 99 − n; or

s = n, r = 98 − n) or three (s = n − 1, r = 98 − n) of the 100 items are allowed

to fail in total, for varying minimum required lower probabilities. Either all tested

items are assumed to be successful (s = n), or at most one or two are allowed to fail

(s = n− 1 or s = n− 2). It is clear from these required sample sizes that, in order

to meet high quality criteria, one must test a large proportion of the total batch,

with the required number of items tested reduced substantially if one allows one

or two failing items among the not-tested items in the batch. On the other hand,

allowing one or two failing items among those tested increases the required sample

sizes substantially.

s = n n− 1 n− 2 n n− 1 n n− 1

p r = 100− n 100− n 100− n 99− n 99− n 98− n 98− n

0.50 50 71 80 30 50 21 39

0.70 70 84 89 45 64 33 51

0.80 80 90 93 55 72 42 58

0.90 90 95 97 69 81 54 68

0.95 95 98 99 78 87 63 75

0.98 98 99 100 86 92 73 82

0.99 99 100 100 90 94 78 86

Table 2.6: Minimum required sample sizes n, with t = 100

2.6 Two-stage acceptance sampling

Two-stage acceptance sampling, also called double sampling [34], is illustrated in

Figure 2.2. It uses chosen proportions p1 and q1 for either accepting or rejecting

the batch after the first stage. Suppose that one wants to accept the whole batch
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Figure 2.2: Sampling Procedure

provided that the lower probability for the event that at least r out of m future items

function, given the number of functioning items in the first stage, is not less than a

specific proportion, say p1. If P < p1 the batch is not accepted at this stage, and

the upper probability P must be checked. If P ≤ q1 (the ratio to reject the batch)

the batch is rejected, otherwise another sample of size n2 is selected. Thereafter, if

P ≥ p2, the decision maker accepts the batch under consideration, else the batch is

rejected. Clearly, in this section of the study it is more interesting to consider the

upper probability as a criterion for making a decision for the first time.

Before testing takes place, one needs to decide on a suitable number of items

to be tested in the first stage, with the knowledge that, if the test results do not

clearly indicate a final decision (accept or reject the batch of m items), one can test

a further n2 items before making the final decision. With uncertainty quantified by

lower and upper probabilities, a natural criterion for accepting the batch of m items,

after the first n1 tests have led to s1 successes, is

P (Y n1+m
n1+1 ≥ r|Y n1

1 = s1) ≥ p1 (2.12)
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for some chosen values of r, s1 and p1. In this NPI approach, the following equality

holds (see Section 2.3.1),

P (Y n1+m
n1+1 ≥ r|Y n1

1 ≥ s1) = P (Y n1+m
n1+1 ≥ r|Y n1

1 = s1) (2.13)

which, as the lower probability in (2.12) is increasing in s1, ensures that once n1, s1

and p1 have been chosen before the tests take place, the required quality is certainly

achieved if the actual number of successes in the n tests is larger than s1. If criterion

(2.12) is satisfied, that is if the observed number of items that function successfully

in the test is at least s1, then this would indicate that the quality of the first n1

tested items is high enough to accept the batch of m items without further testing.

An alternative final decision after n1 items have been tested is to reject the batch

of m items. It is logical to take this decision if there are more failed items in the

test than is judged to be acceptable, in such a manner that it indicates that it is

unlikely that the batch of m items will have sufficient good items. A convenient way

to express this, if testing n1 items at the first stage has revealed s1 successes, is by

use of the criterion

P (Y n1+m
n1+1 ≥ r|Y n1

1 = s1) ≤ q1 (2.14)

for some chosen values of r and q1. Notice here the use of the NPI upper probability,

which can be interpreted as only suggesting to reject the batch after the first stage

if the evidence against the event Y n1+m
n1+1 ≥ r is considered strong enough to make

this event unlikely. As before, the choice of the values r, s1 and q1 will be required

before testing takes place if they are to guide the choice of n1, at which stage the

criterion used will actually be

P (Y n1+m
n1+1 ≥ r|Y n1

1 ≤ s1) ≤ q1 (2.15)

Similar to Equality (2.13) for the NPI upper probabilities the following equality

holds

P (Y n1+m
n1+1 ≥ r|Y n1

1 ≤ s1) = P (Y n1+m
n1+1 ≥ r|Y n1

1 = s1) (2.16)

It is interesting to compare Inequality (2.15) to Inequality (2.7). In both cases,

the upper probability based on data in the form of a bound on the number of
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successes, is equal to the upper probability based on data taking on the precise

value which satisfies the bound and is most supportive for the event of interest. It

should be emphasized that, throughout this NPI approach to acceptance sampling,

test information of the form Y n1
1 ≥ s1 or Y n1

1 ≤ s1 is considered in order to define

the methods, so before data are available. Once test results are available, of course

the exact number of successes is used.

Taking into account that the upper probability in (2.14) is increasing in s1, an

actual decision to reject the batch after at most s1 successful units in the first n1

tested items, is supported by an upper probability of at most q1.

In this setting, a final decision to accept the batch after the first stage of testing

is based on a minimum required value for the lower probability for the event that at

least r items will function successfully in the batch of size m, while a final decision

to reject the batch at that stage is based on a maximum allowed value for the upper

probability for that event. Of course, the choice of p1 and q1 should be considered

with care as discussed later in this section, in all but rather trivial situations they

will be such that, for at least some possible test results in the first stage, either the

final decision to accept or the final decision to reject the batch of m items will be

made after the first stage of testing. If the final decision is not made after the first

stage of testing, then the decision will be to test n2 further items and base the final

decision on the combined results of the n1 + n2 tested items.

The key results for NPI for Bernoulli random quantities, namely the upper prob-

ability (2.3) and lower probability (2.4), are based on the data with only few further

assumptions, and related inferences are not affected by a specific stop-criterion used

for sampling or similar considerations, as long as one is happy with the exchangeabil-

ity assumption for data and future observations that is implicit to Hill’s assumption

A(n) on which NPI is based [7,28]. This occurs similarly in Bayesian statistics, where

it is also known as the ‘likelihood principle’, but in classical frequentist statistics,

in particular when hypothesis tests are considered, the situation is different as data

that could have occurred but did not play a role in such inferences, and such other

possible data from the experiment depend on the specific stop-criterion used.

An advantage of NPI is that its central inferential assumption, Hill’s A(n), is
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explicitly a post-data assumption, which allows study of the data before the actual

predictive inferences, in order to judge whether or not A(n) is deemed reasonable.

As an example, suppose that one tests 10 items sequentially, and the first 5 are all

good followed by 5 failures. Although this is not in itself an argument against the

use of the NPI method for Bernoulli quantities, as used in this study, one may wish

to study in a bit more detail whether or not something could have changed halfway

through the testing process. As always in statistics, it is impossible to exclude any

subjectivity in the modelling assumptions, and in NPI this is with regard to the

post-data exchangeability assumption A(n) for the future observations and the data.

In addition, and again similar to Bayesian statistics, one can apply these same

upper and lower probabilities if the total number of observations are n1 + n2, no

matter whether the data were collected all together, or first n1 data were observed

followed by n2. Hence, generalizing the results for single-stage sampling in the

previous section to multi-stage sampling is conceptually trivial, and it might appear

to be attractive to just perform one test at a time, and stop whenever an appropriate

criterion has been satisfied. However, this might undermine the exchangeability

assumption implicit in the NPI approach, so care must be taken when doing so.

There may be situations in which it is important to determine the number of

items to be tested beforehand, for example if testing takes much time or is expensive.

In such situations, the NPI approach is relatively weak, as it cannot give a strong

indication on the number of tests that should be performed, which is a direct con-

sequence of only making few modelling and inferential assumptions. Nevertheless,

it may be attractive to consider a multi-stage procedure, in which first n1 items are

tested, in a similar setting as discussed in Section 2.4 (we only consider destructive

testing in this section), and depending on the test results the batch of size m is

either accepted or rejected, or a further n2 items are tested. If attention is restricted

to two-stage acceptance sampling, the decision after this second stage, so with a

total of n1 + n2 items tested, will be either to accept or reject the batch. This can

straightforwardly be generalized to further stages, the discussion here is restricted

to two stages.

The minimum required number of items to be tested at the first stage, in order
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to have the possibility of reaching the final decision to accept the batch of m items

without a second stage of testing, is the minimum value of n1 for which criterion

(2.12) is satisfied with s1 = n1. This is intuitively logical, as a test result with-

out failing items is the most favourable information for this event of interest. As

mentioned earlier, when single-stage testing was discussed, this is satisfied if

n1 ≥
p1m

1− p1
(2.17)

Similarly, the minimum required number of items to be tested at the first stage in

order to reject the batch of m items without further testing, is derived by setting

s1 = 0 in criterion (2.14), as a test that reveals only failing items is clearly the worst

case. This leads to the condition

m∏
j=1

j

n1 + j
≤ q1 (2.18)

Conditions (2.17) and (2.18) might provide some insights into appropriate choice

of n1, as if neither of these two conditions are satisfied then the second stage of

testing would always be required. This is pretty weak advice if guidance is required

on choice of an appropriate value for n1, but the NPI approach does not provide

stronger support for this choice.

Generally, in respect of the second sampling stage, the lower probability can be

defined as function of (n1, n2,m). First let us assume that all items in both selected

samples are functioning well, so s1 = n1 and s2 = n2. If we are interested in having

all m future items functioning, so r = m, then the lower probability of interest is

P (Y n1+n2+m
n1+n2+1 = m|Y n1+n2

1 = n1 + n2) =

(
n1 + n2 +m

m

)−1(
n1 + n2 +m− 1

m

)
=

n1 + n2

n1 + n2 +m
(2.19)

In order to find the minimum required sample size n2 for accepting the batch if s1 =

n1, this general form (2.19) can be used, hence n1+n2

n1+n2+m
≥ p1, so n2 ≥ p2

1−p1m− n1.

If all inspected items in the first selected sample were functioning well, s1 = n1,

and we wish to have all m future items to function well, then upper probability will

be
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P (Y n1+m
n1+1 = m|Y n1

1 = n1) =

(
n1 +m

n1

)−1(
n1 +m

n1

)
= 1 (2.20)

which means that the upper probability P reaches to the peak with s1 = n1 and

r = m. Thus, the batch would never be rejected. But if we had only one failing

item in n1, s1 = n1 − 1.

P (Y n1+m
n1+1 = m|Y n1

1 = n1 − 1) =

(
n1 +m

n1

)−1(
n1 +m− 1

n1 − 1

)
=

n1

(n1 +m)
≤ q1

(2.21)

then the sample size n1 for rejecting the batch in this case is n1 ≤ q1
(1−q1)m. If we did

not have any successful item in the first sample, s1 = 0, then the upper probability

for the event that all future items will function, r = m, would be

P (Y n1+m
n1+1 ≥ m|Y n1

1 = 0) =

(
n1 +m

n1

)−1
=

n1!m!

(n1 +m)!
≤ q1 (2.22)

Example 2.5

Table 2.7 shows a numerical example to illustrate the idea of two-stage acceptance

sampling, where D refers to our decision, which is either accept (A) or reject (R) the

batch of m = 10 items. If the results of the first sample of size n1 are not conclusive

with regard to accepting or rejecting (i.e. P < p1 and P > q1), a second sample

of size n2 is taken. To make it clear, suppose we set as criterion that, with lower

probability 0.8, at least r = 8 items out of a batch of m = 10 items function in the

process of interest after testing, and we need to base our decision on whether or not

to accept a batch on test results of items exchangeable to these 10. Suppose further

that we can get 10 items tested at the first testing stage, and if the results prove

to be inconclusive we can test a further 10 items, after which the final decision to

accept or reject the batch of m = 10 items is required. So, after the first stage of

testing, criterion (2.12) with p1 = 0.8 is applied for the decision to accept the batch

directly, and we suppose further that the decision to immediately reject the batch

after the first stage of testing is based on criterion (2.15) with q1 = 0.5. Then, if the

outcome of the first stage testing of 10 items is inconclusive according to these two

criteria, stage two of testing is applied, with a further 10 items tested. In this case,
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exchangeability is assumed for all 30 items involved, so the 20 tested items and the

10 in the batch of interest. Let us, after this test, again assume that we accept the

batch of m = 10 items if the lower probability for at least r = 8 items functioning is

at least 0.8, now of course based on the information of the 20 items tested. Hence,

the acceptance criterion after stage 2 becomes P (Y 30
21 ≥ 8|Y 20

1 = s1 + s2) ≥ 0.8,

with s2 the number of items that function successfully in the second-stage test. Of

course, the random quantity involved has now become Y 30
21 , reflecting that we are

interested in functioning of 10 future items following tests on 20 items.

In this setting, suppose first that all 10 items in stage one of testing functioned

successfully. As P (Y 20
11 ≥ 8|Y 10

1 = 10) = 0.89 ≥ 0.8, we accept the batch of

10 items without further testing. If, instead, there was one item that failed this

test, then the test was inconclusive, as P (Y 20
11 ≥ 8|Y 10

1 = 9) = 0.71 < 0.8 and

P (Y 20
11 ≥ 8|Y 10

1 = 9) = 0.89 > 0.5, and therefore the second stage of testing will

be used for a further 10 items. Suppose now that, in this second stage, all 10

tested items function, so in total 19 out of 20 tested items functioned. This leads to

P (Y 30
21 ≥ 8|Y 20

1 = 19) = 0.90 ≥ 0.8, and now the batch of 10 items, which have not

been tested but are exchangeable with the 20 that were tested, will be accepted. If

there had been 9 functioning items in the second-stage test, then the batch would

also have been accepted as P (Y 30
21 ≥ 8|Y 20

1 = 18) = 0.81 ≥ 0.8, but for any smaller

number of good items it would have been rejected. It is nice to note here that 9

successful items out of 10 was not deemed to be sufficiently strong evidence to decide

to accept the batch after the first stage of testing, but 18 successful items out of 20

is (just) sufficient to accept the batch. In Table 2.7 the results are given for some

other values for r, s1 and s2 with the same considered p1, q1 and p2 also.
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r = m− 2 = 8

s1 P P D s2 P D

s1 = n1 = 10 0.89 - A

s1 = n1 − 1 = 9 0.71 0.89 n2 s2 = n2 = 10 0.90 A

s2 = n2 − 1 = 9 0.81 A

s1 = n1 − 2 = 8 0.50 0.71 n2 s2 = n2 = 10 0.81 A

s2 = n2 − 1 = 9 0.69 R

r = m− 1 = 9

s1 P P D s2 P D

s1 = n1 = 10 0.76 1 n2 s2 = n2 = 10 0.89 A

s1 = n1 − 1 = 9 0.76 0.76 n2 s2 = n2 = 10 0.74 R

s2 = n2 − 1 = 9 0.59 R

s1 = n1 − 2 = 8 0.29 0.50 R

r = m = 10

s1 P P D s2 P D

s1 = n1 = 10 0.50 1 n2 s2 = n2 = 10 0.67 R

s2 = n2 − 1 = 9 0.43 R

s1 = n1 − 1 = 9 0.23 0.50 R

s1 = n1 − 2 = 8 0.10 0.24 R

Table 2.7: Two stage acceptance sampling with n1 = n2 = m = 10, p1 = p2 = 0.80

and q1 = 0.50
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Example 2.6

This example illustrates the methods of Sections 2.4, 2.5 and 2.6 for a large batch

of size m = 200 future items. In case of destructive tests, as presented in Section

2.4, Table 2.10 shows the minimum required sample size n, which should be tested

with different quality requirements p, r and s. For example, with an acceptable

quality level of p = 0.50, at least 781 items need to be tested if one will accept the

batch if two or fewer items fail, s = n− 2, and one wishes all 200 items in the batch

to function. While a minimum required lower probability of p = 0.95 in this case

requires at least n = 29610 items to be tested.

Tables 2.8 and 2.9 present the minimum required sample size n if the test was

not with destruction, as presented in Section 2.5. Suppose that one requires all 200

future items to function, r = 200−n, if the sample of size n contains not more than

two failed items, s = n − 2, with p = 0.50, then at least 100 items must be tested.

If we increase p to 0.95, at least 198 items have to be tested. However, when one

reads down the columns in Tables 2.10 and 2.8, we see the effect of the required

quality level p, how many successful items in the tested items s and in the future

batch r, and the minimum required size of our sample to accept the batch under

inspection batch. When one reads across the tables below we see how quality affects

the sample size, as the sample size increases when the quality requirement is higher.

On the other hand, Table 2.11 shows the minimum required sample size n2 to

accept the batch in the second stage. If we consider n1 as in Table 2.10 in case

s = n and r = 198 with different p, the required sample sizes n2 are given in Table

2.11. As can be seen the total combined sample sizes required to accept the batch

is still the same. In other words, in the single sampling plan, the batch of size 200

can be accepted if a sample of size 200 has been tested with s = n, r = 200 and

p = 0.5, but if we tested only 52 items the batch should be rejected then a second

sample n2 is selected. To accept the batch in this stage 148 items have to be tested

52 + 148 = 200. While, if s = n− 1, r = m− 1 = 199 and p = 0.9, 820 items should

be tested in the first stage, while if we tested 230 in that stage, 820 − 230 = 590

items should be tested as a second sample n2. For all cases, the sample sizes in case

of s = n and r = m− 2 = 198 in Table 2.10 are used as n1 with different p.
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s = n n− 1 n− 2 n n− 1 n n− 1

p r = 200− n 200− n 200− n 199− n 199− n 198− n 198− n

0.50 100 142 160 60 100 42 78

0.60 120 156 166 78 116 60 90

0.70 140 168 178 90 128 66 102

0.80 160 180 186 110 144 84 116

0.90 180 190 194 138 162 108 136

0.95 190 196 198 156 174 126 150

0.98 196 198 200 172 184 146 164

0.99 198 200 200 180 188 156 172

Table 2.8: Minimum required sample sizes n, with t = 200

s = n n− 1 n− 2 n n− 1 n n− 1

p r = 180− n 180− n 180− n 150− n 150− n 110− n 110− n

0.50 7 15 23 3 7 2 4

0.60 9 18 26 4 8 2 4

0.70 11 21 30 5 9 2 5

0.80 15 26 35 6 11 3 6

0.90 20 32 42 8 14 4 7

0.95 26 39 49 10 16 5 9

0.98 33 46 56 13 20 7 10

0.99 38 51 62 15 22 8 12

Table 2.9: Minimum required sample sizes n, with t = 200
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p s = n s = n− 1 s = n− 2 s = n s = n− 1 s = n s = n− 1

r = 200 r = 200 r = 200 r = 199 r = 199 r = 198 r = 198

0.50 200 484 781 83 200 52 126

0.70 467 1030 1600 165 351 99 207

0.80 800 1700 2610 247 496 142 279

0.90 1800 3710 5610 432 820 230 423

0.95 3800 7710 11610 693 1275 342 602

0.98 9800 19710 29610 1212 2175 535 911

0.99 19800 39710 59610 1796 3120 725 1215

Table 2.10: Minimum required sample sizes n with m = 200

p s = n s = n− 1 s = n− 2 s = n s = n− 1 s = n s = n− 1

r = 200 r = 200 r = 200 r = 199 r = 199 r = 198 r = 198

0.50 148 432 729 31 148 0 74

0.70 368 931 1501 66 252 0 108

0.80 658 1558 2486 105 354 0 137

0.90 1570 3480 5380 202 590 0 193

0.95 3458 7368 11268 351 933 0 260

0.98 9265 19175 29075 677 1640 0 376

0.99 19075 38985 58885 1071 2395 0 490

Table 2.11: Minimum required sample sizes n2 with m = 200 and predetermined n1
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2.7 Concluding remarks

The nonparametric predictive approach to basic acceptance sampling problems, as

presented in this chapter, differs from more established frequentist methods as the

emphasis is explicitly on random quantities representing functioning of actual items,

instead of statistical tests and related inferences on model parameters. The Bayesian

approach also offers the option of predictive inference, yet there one would condition

explicitly on the event Y n
1 ≥ s, in which case all these possible values for the numbers

of successes in the n tests are taken into account, with the prior distribution over

these values still influencing the inferences. The approach presented in this chapter,

as indeed NPI in general [8], aims explicitly at reduction of modelling and other

assumptions such as prior information, while still allowing some useful inferences.

The use of lower and upper probabilities to quantify uncertainty supports this aim,

and leads to the attractive opportunity to focus on lower probabilities for quality

criteria, which can be considered to include some robustness in the inferences. The

price one seems to pay for such robustness is the requirement, in most cases, of

a large number of tested items, with few failures, in order to decide to accept a

sample. However, if one considers that all information underlying these inferences

comes from the test data, this should not be surprising if one really wishes ambitious

quality criteria to be met, and if these criteria are formulated in terms of the quality

of the actual items that will be used and that have not yet been tested.

The NPI approach presented in this chapter, in line with NPI in general, does

not make use of prior assumptions on the data that will be observed or on specific

features of a population distribution. The central A(n) assumption has an explicitly

post-data nature, meaning that one judges whether or not it is deemed acceptable

after the data have appeared. Although this provides attractive inferences which are

little influenced by assumptions, as a consequence one cannot derive strong guidance

on required numbers of items to be tested, which is possible when using classical

frequentist or Bayesian statistical methods. As it is often difficult to judge, for the

latter more established methods, the influence of additional modelling assumptions,

there is a strong case for simultaneously using NPI and several other methods, where

the latter can provide guidance on sample size considerations, while, once the data
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are available, NPI can be used either directly for the inferences of interest, or to

judge whether inferences resulting from the alternative methods are significantly in-

fluenced by the additional modelling assumptions underlying those methods. Such

other methods also enable considerations, as part of the process to determine suit-

able sample sizes for testing, of so-called producer and consumer risks, related to

the possibilities that a batch which is of sufficient quality gets rejected and that

a batch which does not meet the quality criterion gets wrongly accepted. Again,

such considerations have not yet been considered in the NPI approach. Exploration

of how such considerations can be taken into account at later stages in multi-stage

testing is an interesting challenge for future research.



Chapter 3

Sequential Acceptance Decisions

3.1 Introduction

In this chapter we present a new heuristic approach to sequential acceptance prob-

lems which generalize the well-known secretary problem, also known as the marriage

problem. We assume that there are N ≥ 2 candidates from which one wishes to se-

lect c candidates, with 1 ≤ c ≤ N−1. We assume that all candidates can be ranked,

without ties, with regard to a criterion of interest, such that the best candidate has

rank 1 and the worst candidate rank N . The candidates are observed in a random

sequence, with all sequences equally likely, and upon observation the relative rank

of a candidate with regard to all previously observed candidates becomes known

without observational error. It should be emphasized that no further information is

assumed to become available about candidates, for example no real-valued measure-

ment or score related to the quality of the candidate will become available. Actually,

as we will comment on in Subsection 4.2.2 when discussing future research topics ,

such additional information would not necessarily change the core of our heuristic

method significantly. In Sections 3.2, 3.3 and 3.4 we will assume that candidates are

observed one at a time, in Section 3.5 this is generalized to simultaneous observa-

tion of subgroups of candidates. Upon observation of candidates it must be decided

immediately whether to accept or discard the candidate, it is assumed throughout

the chapter to be impossible to discard accepted candidates, or accept discarded

candidates, at a later stage. Of course, the aim is to select c good candidates, and

43
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it is important to consider how ’good’ can be measured.

Sequential acceptance problems have attracted much attention in the literature.

In particular, the special case with c = 1, known by a variety of names such as

‘secretary problem’ and ‘marriage problem’, has been solved by Lindley [33] using

dynamic programming, both under the explicit assumption that one is only inter-

ested in selecting the candidate with rank 1 and the case with a loss function that

is linear in the rank of the selected candidate.

Freeman [23] presented an extensive overview of the literature till the early

1980’s, including attention to aspects such as uncertain acceptance of a candidate,

recall opportunities, unknown total number of candidates, aiming for the minimum

expected rank of the selected candidate and more general loss or utility functions.

Freeman also discusses contributions in which more than one choice is made, with a

variety of criteria. In particular, Henke [27] considered selection of candidates with

the aim to minimise the sum of their actual ranks, which we also aim for in this study.

Henke proved that a candidate should be accepted if his relative rank, compared

to the ranks of the candidates already observed, is below a threshold value which

depends on the total number of candidates, the number of candidates required, the

number of candidates already accepted, and the stage in the process. Henke provides

a system of recurrence relations that determine these threshold values. In principle,

this problem can be formulated as a dynamic programming problem and hence the

optimal selection strategy can be determined, so it seems that the problem is solved.

However, once N and c are not small, the number of paths included in the dynamic

programming formulation is extremely large, making computation of the optimal

strategy impossible.

These sequential acceptance problems have also been studied from different per-

spectives, with probability theory typically used to study performance of some rather

basic rules, focusing on topics such as the expected number of candidates to be ob-

served until one has accepted c candidates for a specific rule. For example, Krieger

et al [31] present probabilistic properties for several rules including a percentage

rule, where a candidate is accepted if his relative rank at time of observation be-

longs to a fixed percentage of best ranks among those already selected, for example
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if the percentage is set at 50% it implies that acceptance of a candidate improves

the median of the ranks, at that moment, of all selected candidates. Krieger, Pollak

and Samuel-Cahn [31] study properties such as the expected number of candidates

selected at any stage in the process using such fixed percentage rules. In Section

3.6, we compare our new heuristic approach with a variation to this fixed percentage

rule.

In this chapter, we propose a new heuristic method for solving such sequential

acceptance problems, which will not generally provide the theoretically optimal so-

lution but which is computationally very straightforward and also quite flexible for

variations such as candidates arriving in groups. The approach is related to the

frequentist statistical framework of nonparametric predictive inference (NPI) [3, 8],

and the performance of the resulting strategies is investigated via simulations. We

introduce our NPI-based heuristic method in Section 3.2. In Section 3.3 we investi-

gate our new method for the basic case where only one candidate is to be selected.

In Section 3.4 we generalize this to selection of c ≥ 1 candidates. Whilst in Sections

3.2, 3.3 and 3.4 we assume that candidates are observed sequentially one at a time,

in Section 3.5 we consider the situation with groups of candidates being observed

together, with the acceptance decisions for all members of such a group made simul-

taneously. We will in particular consider whether or not it is always an advantage

to see multiple candidates in groups. In Section 3.6 we compare our approach to an

alternative heuristical method which uses a fixed-percentage. Another comparison

is considered in Section 3.7, to namely methods that improve the subset of accepted

candidates, where a candidate is selected only if his relative rank is not more than

the median or the mean of the relative ranks of the already selected. In Section

3.8 we present a related alternative approach with a randomised decision process,

where the value of the threshold p is chosen randomly, we also compare this method

to our NPI heuristic approach. We end this chapter with some concluding remarks

in Section 3.9.
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3.2 NPI-based heuristic approach

We consider the scenario described in Section 3.1, with N candidates observed one

at a time, of which we must select c candidates. Consider stage j, that is we are

observing the j-th candidate and learn his relative rank rj compared to the previous

j−1 candidates, so rj ∈ {1, . . . , j}. Suppose that from the previous j−1 candidates

a have been accepted, with 0 ≤ a < c, of course the process stops once c candidates

have been selected. As we will see in Section 3.4, this does not mean that the

remaining candidates can be totally neglected, as their ranks are still required in

order to determine the ranks among all N candidates of the c selected candidates,

these ranks among all candidates will be called ‘absolute ranks’. We denote the

absolute rank of candidate j by Rj, where it is crucial to emphasize that Rj will

only be known to us, when going through the process of selecting candidates, once

all N candidates have been observed.

The heuristic method proposed in this chapter is based on the probability of

the event that among the remaining N − j candidates, there are at least c− a who

are better than the current j-th candidate, so their absolute ranks are smaller than

the absolute rank Rj of the current candidate. Let Y N
j+1(rj) denote the number

of candidates following the j-th candidate with relative rank rj, who have lower

absolute rank than him, then the probability of interest to us, and on which our

heuristic method is based, is

P (Y N
j+1(rj) ≥ c− a) =

(
N

j

)−1 N−j∑
l=c−a

[(
rj − 1 + l

l

)(
N − rj − l
N − j − l

)]
(3.1)

This probability follows by direct combinatorial arguments based on the fact that all

sequences of candidates, and hence of their absolute ranks, are assumed to be equally

likely, based on the A(n) assumption applied to multiple future observations. Note

that for the events considered in this chapter, A(n) leads to precise probabilities. The

term within the summation in (3.1) is easily seen to correspond to the case where

there are precisely l future candidates with absolute rank lower than that of the j-th

candidate, who is currently being considered, as it counts all combinations with l

of the N − j future candidates’ absolute ranks being smaller, and the remaining

N − j − l of these absolute ranks being greater than the absolute rank of the j-th
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candidate.

It should be emphasized that probability 3.1 is a direct predictive probability

for the future N − j observations, based on the first j observations, and is not a

probability resulting from arguments of sampling variation as traditionally used in

statistics. As such, this probability (3.1) fits in the NPI framework of statistics [3,8].

The heuristic solution for such a sequential acceptance problem proposed in this

chapter is as follows. We choose a threshold probability value p, 0 < p < 1, and we

decide to accept the j-th candidate if

P (Y N
j+1(rj) ≥ c− a) < p (3.2)

and to reject him if

P (Y N
j+1(rj) ≥ c− a) ≥ p (3.3)

So, the current candidate is rejected if the probability that there are at least c− a

better candidates among the future N − j candidates is at least p, so if it is deemed

likely (compared to choice of value of p) that there are sufficient stronger candidates

yet to come, and he is accepted if this probability is smaller than p. This implies

that for smaller values of p there is a tendency to accept fewer candidates early on,

while for larger values of p earlier candidates are more likely to be accepted. In the

limit case with p ↓ 0 one ends up accepting only the final c candidates, while the

limit case with p ↑ 1 leads to the first c candidates being accepted.

It is important to study which values of p give good performances of our heuristic

method, this is one of the topics addressed in the simulation studies in the following

sections. In addition to possible arguments based on symmetry, one could argue in

favour of setting p = 1/2 by considering the following scenario. Suppose we have

to decide on acceptance of candidate j = N − 1 with rank rN−1, and c − a = 1 so

we must select one more candidate. Clearly, the random relative rank of the final

candidate has equal probability 1/N to be any value 1, 2, . . . , N , and the probability

that the absolute rank of candidate N is less than the absolute rank of candidate

N − 1 is equal to rN−1/N . Hence, setting p = 1/2 leads to candidate N − 1 being

accepted if his relative rank rN−1 is less than N/2, else the final candidate will

be accepted, which gives equal chances to each of the final two candidates to be
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selected (neglecting the arbitrariness of the choice of the strict inequality in either

(3.2) or (3.3), so what to do if rj = N/2). While in most of this chapter we will keep p

constant for all j, we also in Subsection 3.3.2 briefly explore varying p. The heuristic

method presented in this chapter is different from percentage rules or other methods

that have been proposed in the literature, and as computation of probability (3.1) is

straightforward and this method does not require backward optimization as in the

dynamic programming approach, the computational effort required to implement

this heuristic method is very small, even for large values of N and c.

While the real benefit of this method will become clear in the problems involving

selection of multiple candidates, considered in Sections 3.4 and 3.5, we start explor-

ing its use and performance for the simple situation where only a single candidate

needs to be selected.

It is mathematically straightforward to include loss functions in this framework,

but for practical applications such loss functions may be rather artificial and only of

indicative value. We prefer to consider and comment on the overall performance of

the methods we propose, and those we compare our approach with, without focus

on specific loss functions. When we consider selection of multiple candidates, which

is the main reason for developing our heuristic approach, we will focus on the sum

of the absolute ranks of the selected candidates, also without further use of loss

functions.

All simulation studies reported in this chapter involve 10,000 runs1, so each

specific algorithm is applied to 10,000 cases, each case being a random permutation

of the numbers 1, . . . , N representing the absolute ranks of the N candidates. For

example, for N = 4 one such possible permutation would be (3, 4, 1, 2), in which

case the absolute rank of the first candidate is R1 = 3, of course he has relative

rank r1 = 1 as is always the case for the first candidate. The second candidate

has R2 = 4 and r2 = 2. The third candidate has R3 = 1 and r3 = 1, and finally

the fourth candate has R4 = 2 and r4 = 2. It should be emphasized that only the

relative ranks rj are observed, the absolute ranks Rj are only known once all N

1The statistical software R was used
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candidates have been observed. We only report on results of a single simulation of

10,000 runs for each case. Such simulations were repeated several times for each

scenario, but the results showed very little variation so the presented cases give a

clear description of the performances of the considered approaches in the specific

scenarios. Different scenarios were also studied, the main conclusions from those

were in line with those from the cases reported here. If several procedures (e.g.

different values of p in our approach) are compared and the results are presented in

a single table or figure, then the same 10,000 runs have been used for all procedures

to eliminate the effect of random fluctuations due to different permutations being

used.

3.3 Selecting one candidate

Lindley [33] used dynamic programming to solve the basic problem of selecting a

single candidate under a 0-1 loss (or utility) function, reflecting the situation that

one only wishes to select the best candidate (hence with absolute rank 1). The

solution to this problem, which has also been derived by other methods [23], is

easily found due to the fact that one is only happy with the best candidate and does

not distinguish between all other candidates, hence obviously one only accepts a

candidate if his relative rank is 1. The solution is derived by defining aj =
∑N−1

i=j i−1

and j∗ the unique integer for which aj∗−1 ≥ 1 > a∗j , then the first j∗ − 1 candidates

are not accepted and the first candidate thereafter who is better than all previous

candidates (hence has relative rank 1) is accepted. The probability of selecting

indeed the best candidate, following this strategy, is approximately e−1 = 0.368 for

large N . Of course, following this policy one may end up having to accept the final

candidate whatever his (relative and absolute) rank.

Lindley [33] also discussed the use of a loss or utility function that is linear in

the rank, hence minimising the expected rank of the single accepted candidate, an

approach that reflects more closely the view we take in this study. Lindley proved

that the optimal procedure is of the, intuitively logical, form to accept a candidate

if his relative rank is at most some threshold value which depends on the stage j
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of the process and which can be calculated from a system of recurrence equations.

Already for this problem with only a single candidate to be selected, solving the

recurrence equations is a substantial computational burden, and Lindley and others

(see [23]) proposed approximate methods using differential equations to derive these

thresholds.

When selecting multiple candidates, the computational burden prevents the dy-

namic programming approach to be used for situations where N and c are not small,

in which case our heuristic approach, with its computational simplicity, becomes at-

tractive, as will be discussed in Section 3.4. We first consider our approach for the

problem of selecting a single candidate, both to consider its performance for this ba-

sic problem and to get some understanding of the choice of the threshold probability

value p.

We consider the case with N = 10 candidates of who one candidate must be

selected, so c = 1. For each of the 10,000 runs in the simulations, our procedure

was applied with p taking the values 0.1, 0.2, . . . , 0.9 and, additionally, p = 0.632

was also included for reasons explained in Subsection 3.3.1. Figure 3.1 presents

boxplots for each of these procedures. Table 3.1 gives the detailed results, namely

the number of times the selected candidate had each absolute rank, together with

the cumulative number of selected candidates, indicated by
∑

, which is the number

of selected candidates with absolute rank at most the given number. Clearly, the

procedure functions poorly for small values of p, with best performance for p in

about the range 0.5 to 0.8, where the actual best performance depends of course on

the chosen quality criterion. With p = 0.632 the best candidate is most frequently

selected, if interest is generally in aiming at low rank of the selected candidate then

also p = 0.6 and p = 0.7 lead to very good performance of our method, with the

results for p = 0.5 and p = 0.8 not far behind. The cumulative numbers in Table

3.1 show that, while p = 0.8 does not lead to the best candidate being selected as

often as for p = 0.4 to p = 0.7, it performs very well if one would be happy selecting

someone with absolute rank not greater than 6. Actually, if one would be happy

selecting any candidate except the worst one (with absolute rank 10), then p = 0.9

performs best as this never led to selecting the worst candidate in our 10,000 runs.
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Figure 3.1: NPI for N = 10, c = 1

Absolute rank

1 2 3 4 5 6 7 8 9 10

p = 0.1 1042 1017 1036 971 1001 899 1002 990 1046 996∑
1042 2059 3095 4066 5067 5966 6968 7958 9004 10000

p = 0.2 1890 1043 934 870 879 796 895 876 934 883∑
1890 2933 3867 4737 5616 6412 7307 8183 9117 10000

p = 0.3 2630 1781 939 653 675 613 669 670 694 676∑
2630 4411 5350 6003 6678 7291 7960 8630 8324 10000

p = 0.4 3002 2207 1559 709 449 379 414 413 424 444∑
3002 5209 6768 7477 7926 8305 8719 9132 9556 10000

p = 0.5 3426 2195 1440 965 541 281 282 279 282 309∑
3426 5621 7061 8026 8567 8848 9130 9409 9691 10000

p = 0.6 3336 2519 1715 999 576 317 131 128 130 149∑
3336 5855 7570 8569 9145 9462 9593 9721 9851 10000

p = 0.632 3486 2527 1665 960 500 367 262 67 76 90∑
3486 6013 7678 8638 9138 9505 9767 9834 9910 10000

p = 0.7 3213 2585 1750 1138 653 334 174 46 51 56∑
3213 5798 7548 8686 9339 9673 9847 9893 9944 10000

p = 0.8 2802 2411 1882 1308 826 463 219 60 14 15∑
2802 5213 7095 8403 9229 9692 9911 9971 9985 10000

p = 0.9 2191 1982 1694 1394 1062 772 498 296 111 0∑
2191 4173 5867 7261 8323 9095 9593 9889 10000 10000

Table 3.1: NPI approach for N = 10 and c = 1
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Further insights into this selection process are provided by Table 3.2, which gives

at each possible stage of the process the maximum relative rank of a candidate who

will be selected, still with N = 10 and c = 1 so obviously given that no earlier

candidate has been selected, hence using a = 0 in the probability (3.1). This shows

that for p = 0.1, always the final candidate gets selected, with possible absolute rank

1, . . . , 10 and probability 1/10. For p = 0.9, it is possible that the worst candidate

gets selected if each rj, for j = 2, . . . , 9, exceeds the largest value at which the

corresponding candidate j would be selected, and of course it requires r10 = 10. It

is easy to check that this occurs for 216 out of the 10! possible and equally likely

permutations representing the absolute ranks of the sequence of candidates, the

most obvious one being the case with candidates arriving precisely in the order of

the absolute ranks, so j = Rj. In this case with p = 0.9, the probability that the

worst candidate gets selected in a single run is 5.95× 10−5, hence in one simulation

study with 10,000 independent runs the probability of none of these runs leading

to the worst candidate being selected is about 0.55 (derived by approximating the

Binomial distribution by the Poisson distribution with parameter 0.595). Indeed, in

other simulation runs with the same values N = 10, c = 1 and p = 0.9 we did see

small numbers of cases in which the worst candidate had been selected.

j Select j if rj ≤

p = 0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9

1 - - - - - - - - - -

2 - - - - - - - - - 1

3 - - - - - - - - 1 1

4 - - - - - - 1 1 1 2

5 - - - - - 1 1 2 2 2

6 - - - - 1 1 1 2 2 3

7 - - - 1 1 2 2 3 3 4

8 - - 1 2 2 3 3 4 5 6

9 - 1 2 3 4 5 6 6 7 8

10 10 10 10 10 10 10 10 10 10 10

Table 3.2: NPI for N = 10, c = 1: optimal procedure
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Figures 3.2 and 3.3 provide results of a similar simulation of 10,000 runs, but with

N = 30 and N = 60, respectively. The conclusions are in line with those for N = 10,

but it should be noted that p = 0.1 now leads to a slightly better performance than

‘fully random’, as no longer the final candidate is selected with certainty. In our

procedure applied with c = 1, candidate N gets selected with certainty if and only

if candidate N − 1 would not even get selected if he has rank rN−1 = 1 and no

earlier candidates were selected (so a = 0). In this case, probability (3.1) is equal to

1/N , which is of course immediately clear as it is just the probability for the event

that the final candidate has absolute rank RN = 1. So, it follows that for p ≤ 1/N

our method leads to automatic selection of the final candidate, so in the case with

N = 10 discussed above the value p = 1/10 was precisely the largest possible value

of p for which the tenth candidate is always selected.
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Figure 3.2: NPI for N = 30, c = 1
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Figure 3.3: NPI for N = 60, c = 1

Table 3.3 presents some further summary statistics of these simulations with

N = 10, N = 30 and N = 60, namely the means and standard deviations of

the absolute ranks of the selected candidates per run, together with the number

of best (Rj = 1) and worst (Rj = N) selections. Of course, to select (one of)

the best candidate(s) out of N = 60 is a substantially harder problem than with

N = 10 candidates, but we see that the performance of our procedure is actually

quite close for these two cases when considering how often the best candidate is

selected. Chow [6] showed that, when following the optimal dynamic programming

procedure, the expected absolute rank of the selected candidate in the case with N

candidates and c = 1 has limiting value 3.8695 for N → ∞. This expected value

increases as function of N . This suggests that our NPI approach for N = 60 and

with p = 0.7 performs well as the mean absolute rank of the selected candidates for

the 10,000 simulation runs is 3.61.
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(N, c) 0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9

N = 10, c = 1

Mean 5.48 4.99 4.17 3.39 3.02 2.69 2.60 2.60 2.77 3.36

sd 2.90 3.06 3.05 2.69 2.41 1.96 1.85 1.71 1.68 2.03

Best 1042 1890 2630 3002 3426 3336 3486 3213 2802 2191

Worst 996 883 676 444 309 149 90 56 15 0

N = 30, c = 1

Mean 13.89 10.57 8.15 6.06 4.70 3.72 3.49 3.29 3.41 4.74

sd 9.26 9.47 8.66 7.25 5.86 4.35 3.80 3.12 2.63 3.69

Best 994 1710 2369 2789 3053 3140 3071 2969 2611 1834

Worst 330 248 178 109 65 20 16 6 2 0

N = 60, c = 1

Mean 25.07 18.12 12.80 8.18 5.78 4.44 3.97 3.61 3.69 5.27

sd 19.19 18.86 16.43 12.49 9.20 6.67 5.73 4.36 3.26 4.57

Best 933 1699 2292 2714 3004 3107 3070 2952 2507 1721

Worst 143 109 71 36 21 4 3 0 0 0

Table 3.3: NPI for different N , c: summary statistics
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3.3.1 NPI for Best-Only (NPI-BO)

As mentioned before, our heuristic method is developed particularly for problems

where multiple candidates have to be selected from a substantial total number of

candidates. The case with a single candidate to be accepted (c = 1), as presented in

this section, is mainly included to get a feeling for the approach and the influence of

the value of p. We included the value p = 0.632 in our simulations for the following

reason. If we change our method, still for c = 1, such that in addition to the criterion

given by inequalities (3.2) and (3.3) we only accept candidate j if rj = 1, so if he is

the best candidate seen thus far, then we can compare our approach with Lindley’s

optimal solution for the problem with interest only in selecting the best candidate,

using the 0-1 loss function as described at the start of this section [33]. We call this

variation to our method ‘NPI-BO’ (for Best Only).

The value j∗ in Lindley’s method, which is such that the j∗-th candidate is the

first who will be selected if rj∗ = 1, can be used together with inequalities (3.2) and

(3.3), the latter together with the fact that candidate j∗− 1 would be rejected even

with rj∗−1 = 1. This leads to the following two inequalities

p∗l =

(
N

j∗

)−1 N−j∗∑
l=1

(
N − 1− l
N − j∗ − l

)
< p (3.4)

and

p∗u =

(
N

j∗ − 1

)−1 N−j∗+1∑
l=1

(
N − 1− l

N − j∗ + 1− l

)
≥ p (3.5)

These inequalities provide an interval such that for p ∈ (p∗l , p
∗
u] the results of the NPI-

BO method and Lindley’s method with 0-1 loss function are the same (in both these

methods the final candidate is accepted if no earlier candidate was accepted). For

N = 10 we have j∗ = 4 and (p∗l , p
∗
u] = (0.6, 0.7] while for N = 60 we have j∗ = 23

and (p∗l , p
∗
u] = (0.617, 0.633] and for N = 1000 we have j∗ = 369 and (p∗l , p

∗
u] =

(0.631, 0.632]. More detailed numerical study suggested that p∗l is increasing and

p∗u is decreasing as functions of N , and we further note that these values appear to

converge to 0.632 = 1−e−1 for N →∞. Analytic justification of these suggestions is

difficult due to the required use of j∗, which is not available in closed form. However,

Lindley’s method is known to select the best candidate with probability e−1 = 0.368
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for N →∞. So, if candidate j∗ with r∗j = 1 is accepted because the probability that

there will be a better candidate in the future is about 0.632 for very large values

of N , then indeed this candidate is the best candidate overall with probability of

about 0.368. The choice of p = 0.632 for our method, as included in this chapter,

is therefore based on the fact that our method NPI-BO and Lindley’s method with

the 0-1 loss function coincide for this value for, it appears, all values of N .

First, we compare our heuristic method NPI with Lindley’s method (L), the

results of simulations for N = 10 and N = 30 for different values of p including

0.632 are presented in Figures 3.4 and 3.5. If N = 10, as is shown in Figure 3.4,

NPI performs worse than Lindley’s method for p ≤ 0.4 and p = 0.9, but better

for p = 0.6, 0.632, 0.7 and about similarly for p = 0.5 and p = 0.8 as can also be

seen in Table 3.4. The best possible selection in this case, namely the candidate

with absolute rank 1, was selected by Lindley’s dynamic programming method 3979

out of 10,000 times, while the best candidate gets selected by NPI only 3002 times

with p = 0.4. This quality of selection became better when p increased to p = 0.5

and p = 0.6 with best performance for p = 0.632, where the optimal selection was

made 3486 times, before getting worse again for p = 0.8, as shown in Table 3.9.

Obviously, overall, NPI performs better than Lindley’s method in the frequency of

selecting the second or third best candidates, candidates with absolute ranks 2 or

3, for all values of p. NPI selects the worst candidate, so with absolute rank 10, less

frequently, especially for p ≥ 0.5.

Another simulation of 10,000 runs is presented in Figure 3.5, for the case N = 30.

Figure 3.5 shows the overall changes in the quality of selection for both the NPI

approach and Lindley’s method. The overall figure is nearly identical to the results

for N = 10 in Figure 3.4.
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Figure 3.4: Lindley’s method (L) and NPI for N=10, c=1
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Figure 3.5: Lindley’s method (L) and NPI for N=30, c=1
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Lindley Nonparametric predictive inference Total

NPI

1 2 3 4 5 6 7 8 9 10

1 1480 633 631 275 183 134 157 169 160 162 3979

2 976 510 225 128 35 28 31 29 32 37 2031

3 337 378 285 63 10 6 9 11 2 17 1118

4 136 187 121 216 4 4 3 7 4 0 682

5 49 119 63 16 216 1 4 2 1 0 471

6 18 76 57 8 1 206 1 0 0 0 367

7 6 80 50 33 0 0 209 0 0 0 348

8 0 77 37 0 0 0 0 200 0 0 314

9 0 81 49 0 0 0 0 0 225 0 355

10 0 66 41 0 0 0 0 0 0 228 335

Total 3002 2207 1559 709 449 379 414 413 424 444 10000

Table 3.4: NPI and Lindley’s method with p = 0.4, N = 10 and c = 1

Lindley Nonparametric predictive inference Total

NPI

1 2 3 4 5 6 7 8 9 10

1 2064 431 478 315 204 95 99 94 101 98 3979

2 881 753 164 105 81 9 7 10 8 13 2031

3 296 362 355 58 28 4 3 5 0 7 1118

4 123 161 136 223 32 1 1 2 3 0 682

5 39 111 73 58 190 0 0 0 0 0 471

6 16 76 53 45 5 172 0 0 0 0 367

7 7 77 54 37 1 0 172 0 0 0 348

8 0 77 37 32 0 0 0 168 0 0 314

9 0 81 49 55 0 0 0 0 170 0 355

10 0 66 41 37 0 0 0 0 0 191 335

Total 3426 2195 1440 965 541 281 282 279 282 309 10000

Table 3.5: NPI and Lindley’s method with p = 0.5, N = 10 and c = 1
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Lindley Nonparametric predictive inference Total

NPI

1 2 3 4 5 6 7 8 9 10

1 2515 301 475 302 175 87 36 28 27 33 3979

2 503 1131 168 129 62 38 0 0 0 0 2031

3 196 297 465 88 38 34 0 0 0 0 1118

4 79 169 154 223 29 28 0 0 0 0 682

5 27 130 99 55 132 28 0 0 0 0 471

6 12 98 81 43 34 99 0 0 0 0 367

7 4 100 70 44 32 3 95 0 0 0 348

8 0 102 57 32 23 0 0 100 0 0 314

9 0 104 79 45 24 0 0 0 103 0 355

10 0 87 67 38 27 0 0 0 0 116 335

Total 3336 2519 1715 999 576 317 131 128 130 149 10000

Table 3.6: NPI and Lindley’s method with p = 0.6, N = 10 and c = 1

Lindley Nonparametric predictive inference Total

NPI

1 2 3 4 5 6 7 8 9 10

1 3486 0 243 133 62 30 25 0 0 0 3979

2 0 1748 92 95 42 25 29 0 0 0 2031

3 0 101 847 75 30 34 31 0 0 0 1118

4 0 95 67 442 25 28 25 0 0 0 682

5 0 102 71 27 216 28 27 0 0 0 471

6 0 91 75 32 23 115 31 0 0 0 367

7 0 97 67 41 28 21 94 0 0 0 348

8 0 102 57 32 23 33 0 67 0 0 314

9 0 104 79 45 24 27 0 0 76 0 355

10 0 87 67 38 27 26 0 0 0 90 335

Total 3486 2527 1665 960 500 367 262 67 76 90 10000

Table 3.7: NPI and Lindley’s method with p = 0.632, N = 10 and c = 1
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Lindley Nonparametric predictive inference Total

NPI

1 2 3 4 5 6 7 8 9 10

1 3213 0 357 215 129 49 16 0 0 0 3979

2 0 1658 113 122 91 27 20 0 0 0 2031

3 0 114 810 73 54 45 22 0 0 0 1118

4 0 115 69 416 35 28 19 0 0 0 682

5 0 121 66 47 190 31 16 0 0 0 471

6 0 115 74 39 28 90 21 0 0 0 367

7 0 121 63 59 35 10 60 0 0 0 348

8 0 111 56 52 29 20 0 46 0 0 314

9 0 120 74 57 34 19 0 0 51 0 355

10 0 110 68 58 28 15 0 0 0 56 335

Total 3213 2585 1750 1138 653 334 174 46 51 56 10000

Table 3.8: NPI and Lindley’s method with p = 0.7, N = 10 and c = 1

Lindley Nonparametric predictive inference Total

NPI

1 2 3 4 5 6 7 8 9 10

1 1809 779 617 379 222 116 48 9 0 0 3979

2 107 974 389 274 167 70 43 7 0 0 2031

3 119 85 484 199 116 77 28 10 0 0 1118

4 59 84 62 251 105 58 23 4 0 0 682

5 116 80 51 30 108 84 24 8 0 0 471

6 117 67 59 31 18 47 25 3 0 0 367

7 113 87 54 35 25 10 15 9 0 0 348

8 94 81 60 37 19 7 6 10 0 0 314

9 121 91 50 42 18 16 3 0 14 0 355

10 111 83 56 30 28 8 4 0 0 15 335

Total 2802 2411 1882 1308 826 463 219 60 14 15 10000

Table 3.9: NPI and Lindley’s method with p = 0.8, N = 10 and c = 1
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Secondly, we performed simulations to compare NPI-BO to Lindley’s method

for N = 10 and N = 30, the results are presented in Figures 3.6 and 3.7. In order

to compare NPI-BO to Lindley’s method for the two cases N = 10 and N = 30,

Figures 3.8 and 3.9 show the comparison between NPI-BO and Lindley’s method

(L) in both cases respectively, with p = 0.5 − 0.8. When N = 10 it should be

noted that the overall quality of selections for L were almost identical with NPI-BO

for p = 0.632, 0.70 and 0.80, while NPI-BO performs worse than L for p ≤ 0.6.

Tables 3.10-3.13 show the results for the case N = 10. For example, Lindley’s

method selected the optimal candidate 3979 times, while NPI-BO for p = 0.5 only

did so 3766 times, with an improvement to 3958 times for p = 0.6 as illustrated in

Tables 3.10 and 3.11. Then NPI-BO reaches the optimal solution to get exactly the

same results with Lindley’s method for p = 0.632 and p = 0.7 as detailed in Table

3.12 before a gradual descent in performance for p = 0.8 in Table 3.13, where the

best candidate was selected 3652 times, together with a substantial improvement

in selecting the second, third, fourth and fifth candidates and a smaller number of

selecting the worst candidate with absolute rank 10.
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Figure 3.6: NPI-BO for N=10, c=1
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Figure 3.7: NPI-BO for N=30, c=1

●

●●●

●●●●●●

●

●●

●

●

●●●●●●●

●●●

●

●●

●

●

●●●●

●●●●●

●●●

●●

●●

●●

●●●●

●●●●

●

●●●

●●●●

●

●●●●

●

●●●

●

●

●●●●

●

●●

●

●●

●

●●●●

●

●●●●●

●

●●

●●●●

●●

●●●●

●

●

●

●

●●●●●

●●

●●●

●

●●

●●●

●

●

●

●●●●●●

●

●

●●●●●

●

●

●

●●

●●●

●●

●

●●●●

●

●●

●

●

●

●●●

●

●●●●●●

●

●●

●

●

●●

●●●●

●

●●●

●

●●

●●

●●●●●

●

●●●

●

●

●

●

●●

●●●●

●

●●●

●

●●

●●●

●●

●

●●

●●

●●●●

●●●●●●

●●●

●

●●

●

●

●

●●●

●●●

●●

●

●●●●

●●

●

●

●

●

●●

●

●

●●●

●●●

●

●

●●●

●

●

●●●●

●

●

●●●●

●●

●

●

●

●

●

●●●

●●●

●

●●●●

●●●

●●●

●

●

●

●●●●

●

●●●●

●●

●

●

●●

●●

●●●●

●●●●

●●

●

●

●

●

●

●●●

●●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●●

●●

●

●●

●●●●●●●

●●●

●

●●

●

●●●●●

●●●●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●●●

●●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●●

●●●

●●●

●●●

●

●

●●

●

●

●

●

●

●●●●●●

●●●●●

●

●

●●●

●

●

●

●

●

●

●●●●●

●●

●●

●●●

●

●●

●●

●

●

●●

●

●●

●●●

●●

●

●●●●●

●●

●●

●

●

●

●

●●●●●

●●

●●

●

●

●

●●●●

●

●●

●●●●●●

●

●

●

●●

●

●●

●●

●●●

●●●

●

●●

●●

●●

●●●●

●●●

●●●

●●●●

●●

●

●

●

●●●●●

●●

●

●●●

●

●

●●●

●

●

●

●●

●●●●●

●●●

●

●

●●●●

●●

●

●

●●

●●●

●●

●●●●●

●●

●●

●

●●●

●●●●●●

●●

●●●●●●●

●

●

●●

●●●

●●●●●

●

●

●

●●●

●●●●●●

●

●●

●

●

●●●●●●●

●●●

●

●●

●

●

●●●●

●●●●●

●●●

●●

●●

●●

●●●●

●●●●

●

●●●

●●●●

●

●●●●

●

●●●

●

●

●●●●

●

●●

●

●●

●

●●●●

●

●●●●●

●

●●

●●●●

●●

●●●●

●

●

●

●

●●●●●

●●

●●●

●

●●

●●●

●

●

●

●●●●●●

●

●

●●●●●

●

●

●

●●

●●●

●●

●

●●●●

●

●●

●

●

●

●●●

●

●●●●●●

●

●●

●

●

●●

●●●●

●

●●●

●

●●

●●

●●●●●

●

●●●

●

●

●

●

●●

●●●●

●

●●●

●

●●

●●●

●●

●

●●

●●

●●●●

●●●●●●

●●●

●

●●

●

●

●

●●●

●●●

●●

●

●●●●

●●

●

●

●

●

●●

●

●

●●●

●●●

●

●

●●●

●

●

●●●●

●

●

●●●●

●●

●

●

●

●

●

●●●

●●●

●

●●●●

●●●

●●●

●

●

●

●●●●

●

●●●●

●●

●

●

●●

●●

●●●●

●●●●

●●

●

●

●

●

●

●●●

●●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●●

●●

●

●●

●●●●●●●

●●●

●

●●

●

●●●●●

●●●●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●●●

●●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●●

●●●

●●●

●●●

●

●

●●

●

●

●

●

●

●●●●●●

●●●●●

●

●

●●●

●

●

●

●

●

●

●●●●●

●●

●●

●●●

●

●●

●●

●

●

●●

●

●●

●●●

●●

●

●●●●●

●●

●●

●

●

●

●

●●●●●

●●

●●

●

●

●

●●●●

●

●●

●●●●●●

●

●

●

●●

●

●●

●●

●●●

●●●

●

●●

●●

●●

●●●●

●●●

●●●

●●●●

●●

●

●

●

●●●●●

●●

●

●●●

●

●

●●●

●

●

●

●●

●●●●●

●●●

●

●

●●●●

●●

●

●

●●

●●●

●●

●●●●●

●●

●●

●

●●●

●●●●●●

●●

●●●●●●●

●

●

●●

●●●

●●●●●

●

●

●

●●●

●●●●●●

●

●●

●

●

●●●●●●●

●●●

●

●●

●

●

●●●●

●●●●●

●●●

●●

●●

●●

●●●●

●●●●

●

●●●

●●●●

●

●●●●

●

●●●

●

●

●●●●

●

●●

●

●●

●

●●●●

●

●●●●●

●

●●

●●●●

●●

●●●●

●

●

●

●

●●●●●

●●

●●●

●

●●

●●●

●

●

●

●●●●●●

●

●

●●●●●

●

●

●

●●

●●●

●●

●

●●●●

●

●●

●

●

●

●●●

●

●●●●●●

●

●●

●

●

●●

●●●●

●

●●●

●

●●

●●

●●●●●

●

●●●

●

●

●

●

●●

●●●●

●

●●●

●

●●

●●●

●●

●

●●

●●

●●●●

●●●●●●

●●●

●

●●

●

●

●

●●●

●●●

●●

●

●●●●

●●

●

●

●

●

●●

●

●

●●●

●●●

●

●

●●●

●

●

●●●●

●

●

●●●●

●●

●

●

●

●

●

●●●

●●●

●

●●●●

●●●

●●●

●

●

●

●●●●

●

●●●●

●●

●

●

●●

●●

●●●●

●●●●

●●

●

●

●

●

●

●●●

●●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●●

●●

●

●●

●●●●●●●

●●●

●

●●

●

●●●●●

●●●●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●●●

●●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●●

●●●

●●●

●●●

●

●

●●

●

●

●

●

●

●●●●●●

●●●●●

●

●

●●●

●

●

●

●

●

●

●●●●●

●●

●●

●●●

●

●●

●●

●

●

●●

●

●●

●●●

●●

●

●●●●●

●●

●●

●

●

●

●

●●●●●

●●

●●

●

●

●

●●●●

●

●●

●●●●●●

●

●

●

●●

●

●●

●●

●●●

●●●

●

●●

●●

●●

●●●●

●●●

●●●

●●●●

●●

●

●

●

●●●●●

●●

●

●●●

●

●

●●●

●

●

●

●●

●●●●●

●●●

●

●

●●●●

●●

●

●

●●

●●●

●●

●●●●●

●●

●●

●

●●●

●●●●●●

●●

●●●●●●●

●

●

●●

●●●

●●●●●

●

●

●

●●●

●●●●

●

●●

●●●●●●

●●

●

●

●●●

●●●

●●

●

●

●●

●●

●●●

●

●●●

●

●

●●

●

●

●●●●

●

●●

●

●●●●●●

●

●●

●●●●

●

●●

●

●●

●●●

●●

●●

●

●

●●●●●●●

●●●●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●●●●●●

●●

●

●

●●

●

●

●

●●●●

●

●●

●

●●●

●

●●●●

●●●

●

●●

●●●

●●

●●

●●●

●●●●●

●●

●●

●●

●

●

●

●●

●

●

●●

●

●

●●●

●●●

●

●●●

●●

●

●●

●●●

●●●

●

●

●

●●●

●

●

●●

●●

●

●

●

●●●

●

●●●

●●

●●●

●●

●●●●

●

●●

●

●●

●

●

●●●●●

●●

●●

●●●●

●●●●●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●●

●●

●●

●●

●

●

●●●

●●

●

●

●●●

●

●●●●●●

●●●

●

●

●●

●●●●●●●●●

●●●

●●

●●●●

●●

●●

●

●●●●●

●

●●

●

●

●●●

●●

●

●●

●●●

●

●●

●●●●●

●

●

●

●

●

●

●

●●●

●●●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●●●●

●●●●●

●●

●●

●

●●●●

●●

●

●

●●

●●

●

●

●●

●

●●

●●●

●●

●●●

●●●●

●●

●●●●

●●

●●●

●●●

●

●

L 0.5 0.6 0.632 0.7 0.8

2
4

6
8

10

Figure 3.8: Lindley’s method and NPI-BO for N=10, c=1 with p = 0.5− 0.8
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Figure 3.9: Lindley’s method and NPI-BO with p=0.5-0.8 when N=30, c=1
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Lindley Nonparametric predictive inference Total

NPI-BO

1 2 3 4 5 6 7 8 9 10

1 2266 204 207 193 180 166 186 180 206 191 3979

2 1003 914 14 20 16 13 8 12 13 18 2031

3 301 267 499 7 4 7 6 9 6 12 1118

4 129 80 91 359 3 4 3 4 6 3 682

5 42 38 35 22 329 0 0 0 3 2 471

6 18 11 11 7 5 314 1 0 0 0 367

7 7 4 6 2 1 0 328 0 0 0 348

8 0 0 0 0 0 0 0 314 0 0 314

9 0 0 0 0 0 0 0 0 355 0 355

10 0 0 0 0 0 0 0 0 0 335 335

Total 3766 1518 863 610 538 504 532 519 589 561 10000

Table 3.10: Lindley’s method and NPI-BO with p = 0.5, N = 10 and c = 1

Lindley Nonparametric predictive inference Total

NPI-BO

1 2 3 4 5 6 7 8 9 10

1 2983 123 112 117 109 89 110 111 116 109 3979

2 646 1385 0 0 0 0 0 0 0 0 2031

3 206 207 705 0 0 0 0 0 0 0 1118

4 80 74 90 438 0 0 0 0 0 0 682

5 27 28 28 28 360 0 0 0 0 0 471

6 12 7 6 11 11 320 0 0 0 0 367

7 4 3 3 3 4 3 328 0 0 0 348

8 0 0 0 0 0 0 0 314 0 0 314

9 0 0 0 0 0 0 0 0 355 0 355

10 0 0 0 0 0 0 0 0 0 335 335

Total 3958 1827 944 597 484 412 438 425 471 444 10000

Table 3.11: Lindley’s method and NPI-BO with p = 0.6, N = 10 and c = 1
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Lindley Nonparametric predictive inference Total

NPI-BO

1 2 3 4 5 6 7 8 9 10

1 3979 0 0 0 0 0 0 0 0 0 3979

2 0 2031 0 0 0 0 0 0 0 0 2031

3 0 0 1118 0 0 0 0 0 0 0 1118

4 0 0 0 682 0 0 0 0 0 0 682

5 0 0 0 0 471 0 0 0 0 0 471

6 0 0 0 0 0 367 0 0 0 0 367

7 0 0 0 3 0 0 348 0 0 0 348

8 0 0 0 0 0 0 0 314 0 0 314

9 0 0 0 0 0 0 0 0 355 0 355

10 0 0 0 0 0 0 0 0 0 335 335

Total 3979 2031 1118 682 471 367 348 314 355 335 10000

Table 3.12: Lindley’s method and NPI-BO with p = 0.632 or p = 0.7, N = 10 and

c = 1

Lindley Nonparametric predictive inference Total

NPI-BO

1 2 3 4 5 6 7 8 9 10

1 2659 779 267 142 77 35 16 4 0 0 3979

2 107 1358 298 151 67 28 19 3 0 0 2031

3 119 0 740 139 69 29 15 7 0 0 1118

4 95 0 0 467 81 26 11 2 0 0 682

5 116 0 0 0 313 30 12 0 0 0 471

6 117 0 0 0 0 235 14 1 0 0 367

7 113 0 0 0 0 0 227 8 0 0 348

8 94 0 0 0 0 0 0 220 0 0 314

9 121 0 0 0 0 0 0 0 234 0 355

10 111 0 0 0 0 0 0 0 0 224 335

Total 3652 2137 1305 899 607 383 314 245 234 224 10000

Table 3.13: Lindley’s method and NPI-BO with p = 0.8, N = 10 and c = 1
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From the above discussion, NPI and NPI-BO provide good solutions to the

sequential selection problem in case we are interested in selecting only one candidate,

c = 1, who we wish to be the best, so with absolute rank 1. Thus we finally compare

NPI to NPI-BO in a simulation with 10,000 runs for N = 10. For p = 0.4, Table

3.14 shows that NPI-BO gives the optimal candidate more often than NPI with

3330 times for NPI-BO and 3002 times for NPI, while NPI was better in selecting

candidates with absolute ranks 2 or 3 and NPI selected the worst candidate less often,

444 times for NPI and 662 times for NPI-BO. For p = 0.5, Table 3.15 illustrates

an improvement in both methods where the best candidate gets selected 3766 times

by NPI and 3426 times by NPI-BO. In Table 3.16, for p = 0.6, NPI recorded a

slight fall in selecting the best candidate to 3336 with an improvement in NPI-BO

to 3958 times. For p = 0.632 and p = 0.7, NPI-BO reached the peak by giving

the optimal choice 3979 times, while NPI gave 3486 (for p = 0.632) and 3213 (for

p = 0.7) times out of 10,000 as in Tables 3.17 and 3.18, which show also a continuous

improvement in NPI in terms of selecting the candidate with absolute rank 10. If

p = 0.8, NPI scored a lower number of selecting the worst candidate, only 15 times

with a dramatic fall in selecting the best, only 2802 as well as a slight decrease

in the performance of NPI-BO to score 3652 times to select the best and a slight

improvement in selecting the worst, 224 times.
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NPI Nonparametric predictive inference Total

NPI-BO

1 2 3 4 5 6 7 8 9 10

1 3002 0 0 0 0 0 0 0 0 0 3002

2 0 1028 148 157 136 135 145 141 181 136 2207

3 237 166 591 72 71 74 95 83 88 82 1559

4 91 104 83 431 0 0 0 0 0 0 709

5 0 0 0 0 449 0 0 0 0 0 449

6 0 0 0 0 0 379 0 0 0 0 379

7 0 0 0 0 0 0 414 0 0 0 414

8 0 0 0 0 0 0 0 413 0 0 413

9 0 0 0 0 0 0 0 0 424 0 424

10 0 0 0 0 0 0 0 0 0 444 444

Total 3330 1298 822 660 656 588 654 637 693 662 10000

Table 3.14: NPI and NPI-BO with p = 0.4, N = 10 and c = 1

NPI Nonparametric predictive inference Total

NPI-BO

1 2 3 4 5 6 7 8 9 10

1 3426 0 0 0 0 0 0 0 0 0 3426

2 0 1229 123 126 109 110 115 122 144 117 2195

3 203 143 617 59 61 63 79 66 77 72 1440

4 76 86 72 369 55 50 56 52 86 63 965

5 61 60 51 56 313 0 0 0 0 0 541

6 0 0 0 0 0 281 0 0 0 0 281

7 0 0 0 0 0 0 282 0 0 0 282

8 0 0 0 0 0 0 0 279 0 0 279

9 0 0 0 0 0 0 0 0 282 0 282

10 0 0 0 0 0 0 0 0 0 309 309

Total 3766 1518 863 610 538 504 532 519 589 561 10000

Table 3.15: NPI and NPI-BO with p = 0.5, N = 10 and c = 1
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NPI Nonparametric predictive inference Total

NPI-BO

1 2 3 4 5 6 7 8 9 10

1 3336 0 0 0 0 0 0 0 0 0 3336

2 0 1467 132 135 128 119 126 146 145 121 2519

3 319 137 620 91 97 93 90 78 101 89 1715

4 173 132 99 302 42 40 56 44 61 50 999

5 87 60 50 35 184 27 35 29 34 35 576

6 43 31 43 34 33 133 0 0 0 0 317

7 0 0 0 0 0 0 131 0 0 0 131

8 0 0 0 0 0 0 0 128 0 0 128

9 0 0 0 0 0 0 0 0 130 0 130

10 0 0 0 0 0 0 0 0 0 149 149

Total 3958 1827 944 597 484 412 438 425 471 444 10000

Table 3.16: NPI and NPI-BO with p = 0.6, N = 10 and c = 1

NPI Nonparametric predictive inference Total

NPI-BO

1 2 3 4 5 6 7 8 9 10

1 3486 0 0 0 0 0 0 0 0 0 3486

2 0 1748 101 95 102 91 97 102 104 87 2527

3 243 92 847 67 71 75 67 57 79 67 1665

4 133 95 75 442 27 32 41 32 45 38 960

5 62 42 30 25 216 23 28 23 24 27 500

6 30 25 34 28 28 115 21 33 27 26 367

7 25 29 31 25 27 31 94 0 0 0 262

8 0 0 0 0 0 0 0 67 0 0 67

9 0 0 0 0 0 0 0 0 76 0 76

10 0 0 0 0 0 0 0 0 0 90 90

Total 3979 2031 1118 682 471 367 348 314 355 335 10000

Table 3.17: NPI and NPI-BO with p = 0.632, N = 10 and c = 1
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NPI Nonparametric predictive inference Total

NPI-BO

1 2 3 4 5 6 7 8 9 10

1 3213 0 0 0 0 0 0 0 0 0 3213

2 0 1658 114 115 121 115 121 111 120 110 2585

3 357 113 810 69 66 74 63 56 74 68 1750

4 215 122 73 416 47 39 59 52 57 58 1138

5 129 91 54 35 190 28 35 29 34 28 653

6 49 27 45 28 31 90 10 20 19 15 334

7 16 20 22 19 16 21 60 0 0 0 174

8 0 0 0 0 0 0 0 46 0 0 46

9 0 0 0 0 0 0 0 0 51 0 51

10 0 0 0 0 0 0 0 0 0 56 56

Total 3979 2031 1118 682 471 367 348 314 355 335 10000

Table 3.18: NPI and NPI-BO with p = 0.7, N = 10 and c = 1

NPI Nonparametric predictive inference Total

NPI-BO

1 2 3 4 5 6 7 8 9 10

1 2802 0 0 0 0 0 0 0 0 0 2802

2 0 1753 85 84 80 67 87 81 91 83 2411

3 350 91 1049 62 51 59 54 60 50 56 1882

4 237 123 60 683 30 31 35 37 42 30 1308

5 145 100 47 24 402 18 25 19 18 28 826

6 81 42 48 32 24 195 10 7 16 8 463

7 32 24 13 12 12 11 102 6 3 4 219

8 5 4 3 2 8 2 1 35 0 0 60

9 0 0 0 0 0 0 0 0 14 0 14

10 0 0 0 0 0 0 0 0 0 15 15

Total 3652 2137 1305 899 607 383 314 235 234 224 10000

Table 3.19: NPI and NPI-BO with p = 0.8, N = 10 and c = 1
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3.3.2 NPI with Non-Constant p (NPI-NC)

In this chapter we use a constant p for all candidates j when applying our method.

One could argue in favour of using a function p(j) instead, where an increasing func-

tion seems intuitively most attractive as this is relatively kinder to later candidates

than to early ones, so it would avoid accepting too many candidates early on while

at the same time not delaying acceptance of later candidates too much. The use of

such non-constant p(j) in our heuristic approach is studied via simulations in this

section. We consider the case when p varies linearly from 0.4 to 0.6, as described in

Equation (3.6), and also from 0.5 to 0.8 as in Equation (3.7)

p(j) = 0.4 +
0.2

N − 1
(j − 1) (3.6)

p(j) = 0.5 +
0.3

N − 1
(j − 1) (3.7)

The same 10,000 independent runs for N = 10, which were used in the previous

subsection, are used again in order to compare NPI-NC to NPI approach. This

comparetive study is based firstly on Equation (3.6) and presented in Tables 3.20-

3.24 for p = 0.5 − 0.8 respectively. NPI performs better than NPI-NC in terms of

selecting the best candidate when p = 0.5, 0.6 and 0.632 where NPI-NC recorded

3241 times, while NPI gives the optimal candidate 3426 times for p = 0.5 as shown

in Table 3.20, 3336 times for p = 0.6 as in Table 3.21, 3486 times for p = 0.632 as

in Table 3.22, with a gradual decrease in selecting the best if p = 0.7 and p = 0.8

comparing to NPI-NC, which is seen in Tables 3.23 and 3.24. Also, in most cases

NPI provided the second best candidate more than NPI-NC and NPI does not select

the worst candidate as often as NPI-NC does.

Now we consider the same simulation in case 0.5 ≤ p ≤ 0.8 as in Equation (3.7),

the frequencies of the selected absolute ranks from the best candidate (absolute rank

1) to the worst candidate (absolute rank 10) are 3260, 2456, 1794, 1109, 635, 341,

183, 152, 37, and 33, respectively. These results show a slight improvement in the

performance of NPI-NC than the previous considered criteria which presented in

equation 3.6. However, even with the slight improvement in NPI-NC by considering
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p between 0.5 and 0.8, NPI method is still better than NPI-NC.

NPI Nonparametric predictive inference for nonconstant p Total

NPI-NC

1 2 3 4 5 6 7 8 9 10

1 3241 0 0 97 27 61 0 0 0 0 3426

2 0 2009 0 108 32 46 0 0 0 0 2195

3 0 0 1215 131 34 60 0 0 0 0 1440

4 0 0 106 771 35 53 0 0 0 0 965

5 0 0 66 27 398 50 0 0 0 0 541

6 0 0 54 0 39 188 0 0 0 0 281

7 0 0 39 0 53 0 190 0 0 0 282

8 0 0 35 0 47 0 0 197 0 0 279

9 0 0 37 0 57 0 0 0 188 0 282

10 0 0 42 0 47 0 0 0 0 220 309

Total 3241 2009 1594 1134 769 458 190 197 188 220 10000

Table 3.20: NPI and NPI-NC with p = 0.5, N = 10 and c = 1

NPI Nonparametric predictive inference for nonconstant p Total

NPI-NC

1 2 3 4 5 6 7 8 9 10

1 2373 201 246 153 130 88 31 36 33 45 3336

2 497 1463 155 138 102 52 28 33 25 26 2519

3 266 263 1097 59 20 10 0 0 0 0 1715

4 84 61 78 770 6 0 0 0 0 0 999

5 19 20 17 12 508 0 0 0 0 0 576

6 2 1 1 2 3 308 0 0 0 0 317

7 0 0 0 0 0 0 131 0 0 0 131

8 0 0 0 0 0 0 0 128 0 0 128

9 0 0 0 0 0 0 0 0 130 0 130

10 0 0 0 0 0 0 0 0 0 149 149

Total 3241 2009 1594 1134 769 458 190 197 188 220 10000

Table 3.21: NPI and NPI-NC with p = 0.6, N = 10 and c = 1
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NPI Nonparametric predictive inference for nonconstant p Total

NPI-NC

1 2 3 4 5 6 7 8 9 10

1 1773 367 421 300 242 126 70 59 58 70 3486

2 813 1074 187 159 109 74 23 33 26 29 2527

3 409 377 766 59 29 14 2 4 0 5 1665

4 157 110 134 546 6 5 0 1 0 0 960

5 42 42 37 33 345 1 0 0 0 0 500

6 15 7 12 11 8 207 21 33 27 26 367

7 32 32 37 26 30 31 74 0 0 0 262

8 0 0 0 0 0 0 0 67 0 0 67

9 0 0 0 0 0 0 0 0 76 0 76

10 0 0 0 0 0 0 0 0 0 90 90

Total 3241 2009 1594 1134 769 458 190 197 188 220 10000

Table 3.22: NPI and NPI-NC with p = 0.632, N = 10 and c = 1

NPI Nonparametric predictive inference for nonconstant p Total

NPI-NC

1 2 3 4 5 6 7 8 9 10

1 1500 367 421 300 242 126 70 59 58 70 3213

2 813 863 262 216 143 104 45 50 37 52 2585

3 518 439 580 86 67 32 7 7 6 8 1750

4 237 172 179 410 48 23 18 15 17 19 1138

5 116 110 93 82 227 25 0 0 0 0 653

6 34 35 31 20 23 127 10 20 19 15 334

7 23 23 28 20 19 21 40 0 0 0 174

8 0 0 0 0 0 0 0 46 0 0 46

9 0 0 0 0 0 0 0 0 51 0 51

10 0 0 0 0 0 0 0 0 0 56 56

Total 3241 2009 1594 1134 769 458 190 197 188 220 10000

Table 3.23: NPI and NPI-NC with p = 0.7, N = 10 and c = 1
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NPI Nonparametric predictive inference for nonconstant p Total

NPI-NC

1 2 3 4 5 6 7 8 9 10

1 666 485 488 378 283 173 84 73 77 95 2802

2 1022 348 324 238 183 102 48 59 39 48 2411

3 711 506 233 149 112 63 34 26 23 25 1882

4 424 336 270 139 56 32 13 9 16 13 1308

5 231 188 151 134 60 24 6 12 7 13 826

6 119 95 80 64 47 39 1 2 9 7 463

7 51 41 42 29 18 22 3 6 3 4 219

8 17 10 6 3 10 3 1 10 0 0 60

9 0 0 0 0 0 0 0 0 14 0 14

10 0 0 0 0 0 0 0 0 0 15 15

Total 3241 2009 1594 1134 769 458 190 197 188 220 10000

Table 3.24: NPI and NPI-NC with p = 0.8, N = 10 and c = 1
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3.4 Selecting multiple candidates

We now consider the problem of selecting c candidates out of the total N candidates,

where all candidates are observed sequentially, and the decision to accept or reject

each candidate must be made instantaneously based only on the relative rank of

this candidate compared to the previous candidates. So we still restrict attention

to candidates arriving one-at-a-time, the generalization to candidates arriving in

groups is discussed in Section 3.5. Of course, we hope to select the c candidates with

absolute ranks 1, . . . , c, the worst possible outcome would be to end up with the c

candidates with absolute ranks N − c+ 1, . . . , N . In order to measure the quality of

the group of candidates, we will throughout this chapter use the sum of the absolute

ranks of the selected candidates, aiming at minimisation of this sum. Hence this sum

can be considered as a loss function; if one prefers to formulate decision problems

with utility functions, then choose minus this sum as utility function and aim at

maximisation of utility. The heuristic approach presented here can also be used for

other loss functions that take all the ranks of the selected people into account and

that aims generally speaking at minimisation of these ranks, e.g. possibly using a

weighted sum. For such different criteria, the main reason why a heuristic approach

is needed is the same, we discuss this next before we analyse the performance of the

heuristic approach using simulations.

This sequential acceptance problem can be formulated as a dynamic program-

ming problem with N stages, related to the N candidates, with at each stage the

decision to either accept or reject the candidate, with observations of the relative

rank rj just before the decision at stage j, so about candidate j, is made. The

relative rank is represented as a random quantity2 rj ∈ {1, . . . , j}, it should be

noted that only after observing the rj for all N candidates we know the absolute

ranks Rj, for all candidates j = 1, . . . , N . To represent this optimisation problem

as a dynamic programming problem, the whole problem without taking some con-

2We use the same notation rj for the relative rank of candidate j both for its random value

before observation and for its observed value, and similar for his absolute rank Rj . This avoids

introducing further notation and interpretation will be clear from the context.
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straints into account would require a graph with 2N−1 × N ! paths, where the first

factor relates to all decisions on acceptance or rejectance and the second factor to

the number of possible sequences of relative ranks. We take into account here that

for the final candidate the acceptance decision will be clear due to the strict require-

ment to select c candidates. This requirement actually reduces the graph further,

because once c candidates have been accepted one cannot accept further candidates,

yet the ranks of the remaining candidates are still needed in order to determine the

absolute ranks of the selected candidates. Even with optimal reduction of the graph,

the number of paths to go through to solve the dynamic programming problem is

too large for practical implementation in all cases except when both N and c are

small. This explains the need for heuristic methods, like the one presented in this

chapter.

Although our study does not involve an actual application, there are many de-

cision problems of this nature, where large values of N are not uncommon. For

example, a university may have the opportunity to offer studentships to 10 stu-

dents, with 100 students who meet the requirements visiting over several months to

meet with selectors, with the latter eager to make offers quickly possible since stu-

dents might otherwise accept offers elsewhere. Of course, in practice such problems

may contain more aspects which complicate the modelling and optimisation process,

for example information may be available beyond ranks, or on multiple attributes,

and due to historical information one may have some further judgements about

the absolute rank of a candidate prior to observing all candidates. Nevertheless,

often such further aspects end up in a combined score representing an overall rank-

ing, in which case heuristic methods are likely to remain necessary and the method

presented in this chapter remains relevant. It would be interesting to extend the

currently proposed heuristic method to deal with possible further information, we

leave this as a topic for future research.

We performed extensive simulation studies for our heuristic method in cases

where c candidates must be selected sequentially from a group of N candidates.

Throughout, each case (N, c) was simulated 10,000 times for each of the values of p

considered. We consider first the case with N = 5 candidates and two candidates
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must be selected, so c = 2. For each of the 10,000 runs in the simulations, our

procedure was applied with p taking the values 0.1, 0.2, . . . , 0.9 and, p = 0.632 was

also included as in Section 3.3. Table 3.25 shows the number of times the selected

candidate had each absolute rank. It can be clearly seen that the procedure functions

poorly for small values of p, with best performance for p about 0.4 and 0.5, where

the actual best performance depends of course on the chosen quality criterion.

p Absolute rank Mean sd

3 4 5 6 7 8 9

0.1 1655 1342 2130 2015 1507 683 668 5.51 1.7

0.2 2156 1303 2012 1837 1341 683 668 5.36 1.81

0.3 2381 1867 2477 1791 978 338 168 4.88 1.51

0.4 3148 1831 2471 1382 838 162 168 4.61 1.47

0.5 3148 1831 2471 1382 838 162 168 4.61 1.47

0.6 2316 1679 2408 1461 1166 480 490 5.10 1.71

0.7 2138 1640 2435 1464 1353 480 490 5.17 1.71

0.8 1966 1567 2443 1603 1451 480 490 5.24 1.69

0.9 981 1033 2035 1960 1975 1013 1003 6.00 1.73

Table 3.25: NPI for N = 5, c = 2: absolute rank of selected candidate

Table 3.26 gives summaries of simulation results for the cases with (N, c) equal

to (5, 2), (10, 3), (10, 7), (20, 6), (30, 6) and (30, 10). For each simulated scenario,

the statistic of interest is the sum of the absolute ranks of the c selected candidates.

Table 3.26 provides the mean and standard deviation (sd) of the 10,000 simulations

for each case, together with the number of times the selected group was actually the

best possible, so the candidates with absolute ranks 1, . . . , c were selected. Figures

3.10-3.15 present these simulation results in box plots. It is interesting that these

box plots all have quite similar shapes for corresponding values of p, with best

performances typically for values of p in the range 0.5 to 0.7. The optimal values

for the means and ‘best’ in Table 3.26 are also almost all achieved by values of p in

this range, except for the maximal value of ‘best’ for the case (10, 3) which occurred

for p = 0.4. The computation time for these simulations was effectively neglectable

due to the straightforward nature of our approach with only a single probability to
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be calculated for each candidate. This also holds for substantially larger values of

N and c, for example the comparisons with alternative heuristic methods in Section

3.6 are performed for N = 200 and c = 20, 40, 60, 80 without any computational

problems.

(N, c) 0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9

N = 5, c = 2

Mean 5.98 5.50 5.35 4.85 4.57 4.57 5.13 5.12 5.18 5.25

sd 1.73 1.74 1.80 1.49 1.45 1.45 1.72 1.72 1.71 1.69

Best 1022 1683 2175 2423 3201 3201 2281 2281 2152 1995

N = 10, c = 3

Mean 13.68 12.30 11.11 10.38 10.00 9.80 9.87 10.16 11.96 12.69

sd 4.52 4.22 3.78 3.62 3.24 3.05 3.08 3.13 4.20 4.26

Best 504 750 1145 1607 1558 1530 1472 1257 842 585

N = 10, c = 7

Mean 34.60 33.85 33.65 31.84 31.92 32.30 32.57 32.96 34.13 35.69

sd 4.27 4.20 3.34 3.05 3.10 3.59 3.63 3.79 4.37 4.56

Best 665 909 1003 1512 1466 1455 1353 1263 1033 577

N = 20, c = 6

Mean 43.14 38.15 34.61 32.39 31.54 31.19 31.19 31.81 37.14 40.24

sd 12.20 10.73 9.45 8.18 7.49 7.00 6.97 7.29 10.35 11.73

Best 130 237 350 482 481 483 498 425 238 144

N = 30, c = 6

Mean 53.77 45.54 39.58 36.20 34.55 33.78 33.68 35.47 37.30 48.70

sd 18.61 16.34 13.90 11.73 10.28 9.31 9.13 10.48 11.48 17.28

Best 77 197 272 348 388 403 332 234 80 393

N = 30, c = 10

Mean 95.58 84.67 78.66 75.74 73.73 73.60 73.83 79.27 83.33 93.68

sd 21.96 18.73 15.84 13.86 12.55 12.13 12.19 15.54 18.03 21.70

Best 45 95 153 172 195 186 186 136 92 39

Table 3.26: NPI for different N , c: summary statistics
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Figure 3.10: NPI with N=5, c=2
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Figure 3.11: NPI with N=10, c=3
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Figure 3.12: NPI with N=10, c=7
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Figure 3.13: NPI with N=20, c=6

●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●
●
●
●●
●

●
●●

●●●

●

●●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●
●●
●
●
●

●
●●
●
●

●

●

●

●

●●

●
●

●●●

●

●
●●

●

●

●●

●

●

●

●

●

●●●

●

●●

●●

●

●
●
●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●
●
●
●

●
●

●●
●

●

●
●

●

●

●●

●●
●
●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●
●

●●

●
●●

●
●

●

●
●

●

●

●

●

●

●●

●

●●
●
●

●

●●
●

●●●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●●

●

●

●

●●
●
●

●

●

●●

●

●
●

●

●●●

●●●

●

●
●

●

●

●

●

●
●

●

●●

●
●
●
●

●

●

●

●

●●
●●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●
●●

●

●

●
●

●

●

●●●●
●●

●●
●

●

●●●●

●
●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●●●●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●●●

●

●

●

●

●●

●●
●

●●

●

●

●

●●
●

●
●●

●

●●
●

●
●

●

●

●
●

●

●

●●

●

●●

●
●

●

●

●●

●

●●

●
●●●
●

●

●

●

●

●
●

●

●●

●
●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●●●●

●

●

●

●
●●
●

●●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●
●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●

●

●
●
●●

●

●
●●
●

●

●

●

●

●●

●
●

●
●

●

●

●●●
●
●

●
●
●

●●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●
●●●
●

●

●

●
●

●

●

●

●
●●●●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●
●●
●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●●●
●

●

●

●

●●●

●●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●
●
●●

●

●

●●

●

●

●

●

●
●●
●

●

●●

●

●

●

●●●

●
●

●

●
●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●
●●

●

●●

●
●●●
●
●

●

●

●

●
●

●●
●●

●

●

●

●
●●

●
●
●

●

●

●
●

●

●

●
●

●

●
●

●
●●
●
●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●
●

●●
●●
●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●●●
●

●●
●

●

●
●
●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●
●
●

●
●
●
●●

●

●

●

●●●
●
●

●

●

●

●
●●
●●
●

●

●●●

●

●●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●●
●
●

●
●

●●

●

●

●●

●

●

●●

●●●
●
●

●

●

●●

●
●

●
●

●

●
●
●
●

●

●●

●
●●
●
●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●
●●●
●
●

●

●

●

●

●

●
●●

●
●
●

●●

●

●
●●
●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●
●
●

●●
●●
●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●●

●

●●

●

●●
●

●●
●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●●

●
●
●
●●

●

●

●

●●●

●

●

●

●

●
●●
●
●●

●
●●●

●

●●

●
●

●

●

●

●
●

●

●

●
●●

●

●●
●

●

●

●
●
●

●

●

●●

●

●
●

●

●●●
●
●●
●

●●

●
●

●

●

●
●
●
●

●

●●

●●●

●
●●
●

●

●

●●
●●

●●

●
●

●●

●

●

●

●
●●

●

●
●

●

●

●●

●

●

●
●

●●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●●

●

●●

●
●
●

●●

●
●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●●

●●

●●
●●

●●●

●

●

●
●●

●

●
●
●●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●●
●
●
●

●●

●

●

●
●

●

●●●

●
●

●●●

●

●

●

●

●●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●●
●
●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●
●●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●●

●●

●

●
●

●

●

●

●
●

●

●●●
●
●●
●
●

●

●
●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●●

●

●

●●

●

●

●

●

●●

●
●

●●

●

●

●●

●

●
●

●

●

●
●●

●
●●

●

●

●
●
●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●●●

●

●

●

●●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●●

●
●

●

●

●●

●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●
●

●●●

●

●

●
●
●
●
●

●

●

●

●

●●

●
●

●

●●

●

●

●●●

●

●
●●
●●●●

0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9

20
40

60
80

10
0

12
0

14
0

Figure 3.14: NPI with N=30, c=6
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Figure 3.15: NPI with N=30, c=10
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3.5 Selecting multiple candidates observed in groups

In Sections 3.3 and 3.4, candidates were observed one at a time, and the decision to

either accept candidate j or not to accept him was made before observing candidate

j + 1. In this section we explore the generalization of this situation with candidates

being observed in groups, and on the basis of this information acceptance decisions

on the individual candidates are made. For example, in the problem to offer 10

studentships with 100 candidates, as briefly discussed in Section 3.4, it may be the

case that 5 candidates visit the university on a single day, at the end of which any

offers for studentships have to be made. It is straightforward to adapt our heuristic

method to situations like this, where it does not matter whether the groups are all

of the same size or of varying sizes. In our heuristic procedure, we see the relative

ranks, among all previous candidates and those in this group, of all members of

the group who are considered simultaneously. We then decide first about the best

candidate in this group, using the same criterion as before in this chapter with the

important change that the number of future candidates is of course based on the

remaining candidates after the current group. If this strongest candidate is accepted,

we consider the second strongest, and so on. Of course, if for example the second

strongest candidate in the current group is not accepted, we do not need to look at

further candidates from this group. To make a decision either to accept or reject the

best person in the current group the predictive precision probability (2.5) is used

with respect of the grouping procedure, as follows

P (Y N
(md)+1(r

md
j ) ≥ c−a) =

(
N

md

)−1 N−(md)∑
l=c−a

[(
rmd
j − 1 + l

l

)(
(md)− rmd

j +N − (md)− l
N − (md)− l

)]
(3.8)

where N is the total number of candidates, j is the current candidate, m is the

size of the checked group, d is the current day/stage, c is the number of candidates

wanted to be selected, a is the number of selected candidates so far and rmd
j is the

relative rank of the candidate considered among the first md candidates.

It should be noted in this probability (3.8) that the term a will change to a+ 1

within the group if a candidate has been accepted, then to a + 2 if another one is
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accepted, and so on.

Intuitively, one may expect that it is best to the selectors to observe as many

candidates together as possible, of course with the optimal situation of observing

all candidates together in a single group in which case rj = Rj for all candidates (j

does not really indicate a ‘stage’ anymore here, but can still be used to label the

candidates) so it is trivial to select those with absolute ranks 1, . . . , c. We consider

one case in detail to illustrate a specific feature of such selection of candidates when

they are observed in groups.

Example 3.3

Suppose that N = 24 candidates appear in the following order of absolute ranks:

12, 2, 7, 3, 17, 14, 9, 10, 19, 4, 8, 16, 1, 18, 20, 15, 5, 6, 24, 21, 11, 13, 23, 22.

Tables 3.27-3.32 present the result of the selection process with candidates arriving

in groups of size m, for different values of m and with our NPI method applied

with p = 0.3, 0.4, ..., 0.8, respectively. For example, Table 3.29 presents the absolute

ranks of the selected candidates, presented in the order in which they were selected,

and also the sum of these absolute ranks with p = 0.5. While the case with p = 0.6,

presented in Table 3.30, gives a better performance for m = 1, 2, 3, 6 and leads

to identical solutions for the other values of m considered for this sequence of the

candidates, we focus on the case with p = 0.5 as it has the interesting feature of a

worse selection for m = 6 than for m = 4, hence illustrating that it is not always

beneficial to see candidates in larger groups. Of course, this is due to the information

for individual candidates not always being identical when using different values for

m. In this specific case, having groups of size m = 4 leads to sum of absolute

ranks of 29 while m = 6 leads to 36, so the larger group size gives a worse result.

Clearly, this is due to the candidate with absolute rank 6, who with m = 4 is in the

fifth group and is included based on the consideration that there are only 4 further

candidates to follow after this group and that there are still 2 candidates needed

to be accepted (prior to deciding on this candidate). For m = 6, this candidate is

in the third group, so when he is considered there are still 6 candidates to follow

after his group with two candidates to be selected, it then is better not to select this
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candidate according to our criterion with p = 0.5. The last two cases in Table 3.29,

with m = 8 and m = 12, show that the order in which candidates are accepted can

vary for the same two candidates. The candidate with absolute rank 4 is in group 2

for m = 8, together with the candidate with absolute rank 1. Therefore, the latter is

accepted first because we look at a group of candidates and decide on the strongest

of them first. For m = 12, the candidate with absolute rank 1 is in the second group

and is thus considered later in the process than the candidate with absolute rank 4.

∑
Who m

66 4 1 5 11 23 22 1

66 4 1 5 11 23 22 2

56 4 1 5 11 13 22 3

36 2 4 1 5 11 13 4

36 2 4 1 5 11 13 6

29 2 1 4 5 6 11 8

28 2 3 1 5 6 11 12

Table 3.27: p = 0.3

∑
Who m

51 4 1 5 6 13 22 1

49 4 1 5 6 11 22 2

51 4 1 5 6 13 22 3

29 2 4 1 5 6 11 4

36 2 4 1 5 11 13 6

21 2 3 1 4 5 6 8

21 2 3 4 1 5 6 12

Table 3.28: p = 0.4

∑
Who m

51 4 1 5 6 13 22 1

49 4 1 5 6 11 22 2

47 2 4 1 5 13 22 3

29 2 4 1 5 6 11 4

36 2 4 1 5 11 13 6

21 2 3 1 4 5 6 8

21 2 3 4 1 5 6 12

Table 3.29: p = 0.5

∑
Who m

40 2 4 1 5 6 22 1

40 2 4 1 5 6 22 2

28 2 3 4 1 5 13 3

29 2 4 1 5 6 11 4

26 2 3 4 1 5 11 6

21 2 3 1 4 5 6 8

21 2 3 4 1 5 6 12

Table 3.30: p = 0.6
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∑
Who m

40 2 4 1 5 6 22 1

42 2 4 8 1 5 22 2

28 2 3 4 1 5 13 3

31 2 4 8 1 5 11 4

26 2 3 4 1 5 11 6

22 2 3 7 1 4 5 8

22 2 3 4 7 1 5 12

Table 3.31: p = 0.7

∑
Who m

46 12 2 4 1 5 22 1

26 2 3 4 1 5 11 2

24 2 3 9 4 1 5 3

21 2 3 4 1 5 6 4

26 2 3 4 1 5 11 6

22 2 3 7 1 4 5 8

22 2 3 4 7 1 5 12

Table 3.32: p = 0.8

Tables 3.33-3.38 present the optimal selections for the case that the candidates

arrive in the reversed order to the one given above, and with p = 0.3, 0.4, ..., 0.8,

respectively. Let us consider the case with p = 0.4 in Table 3.34, which is included

as it shows that the case m = 4 might lead to worse selection than the case m = 2,

which may be surprising because here the groups for m = 2 are not split up when

using m = 4 instead (as was the case with the above example with m = 4 and

m = 6). Clearly, the difference is in the selection of the candidate with absolute

rank 9, who is included for m = 4 as when he is considered there are only 4 more

candidates to come, but for m = 2 there are still 6 more candidates to come and

he is not selected, which happens to be beneficial as it allows the candidate with

absolute rank 3 to be selected instead, hence the result for m = 2 is better in this

case than for m = 4.

∑
Who m

28 11 6 5 1 3 2 1

26 11 5 1 4 3 2 2

26 11 5 1 4 3 2 3

26 11 5 1 4 2 3 4

26 11 1 5 4 2 3 6

22 5 1 4 2 3 7 8

22 1 5 2 3 4 7 12

Table 3.33: p = 0.3

∑
Who m

30 11 6 5 1 4 3 1

26 11 5 1 4 3 2 2

30 11 5 6 1 4 3 3

32 11 5 1 4 9 2 4

26 11 1 5 4 2 3 6

21 5 6 1 4 2 3 8

21 1 5 6 2 3 4 12

Table 3.34: p = 0.4
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∑
Who m

39 13 11 6 5 1 3 1

30 11 5 6 1 4 3 2

37 13 11 5 1 4 3 3

29 11 5 6 1 4 2 4

31 11 1 5 4 8 2 6

21 5 6 1 4 2 3 8

21 1 5 6 2 3 4 12

Table 3.35: p = 0.5

∑
Who m

39 13 11 6 5 1 3 1

49 22 11 5 6 1 4 2

39 13 11 5 6 1 3 3

29 11 5 6 1 4 2 4

36 11 13 1 5 4 2 6

21 5 6 1 4 2 3 8

21 1 5 6 2 3 4 12

Table 3.36: p = 0.6

∑
Who m

40 13 11 6 5 1 4 1

49 22 11 5 6 1 4 2

40 13 11 5 6 1 4 3

29 11 5 6 1 4 2 4

36 11 13 1 5 4 2 6

29 5 6 11 1 4 2 8

28 1 5 6 11 2 3 12

Table 3.37: p = 0.7

∑
Who m

58 22 13 11 6 5 1 1

49 22 11 5 6 1 4 2

40 13 11 5 6 1 4 3

40 11 13 5 6 1 4 4

40 11 13 1 5 6 4 6

29 5 6 11 1 4 2 8

28 1 5 6 11 2 3 12

Table 3.38: p = 0.8

Figures 3.16-3.22 show the results of a simulation study for 10,000 runs for se-

lecting 6 candidates out-of 24 candidates, N = 24, c = 6. Figure 3.16 considers the

case of observing the candidates sequentially one at a time m = 1, which is exactly

the same as the discussed situation in Section 3.4. However, Figure 3.16 shows that

NPI gives good performance especially with p between 0.5 and 0.7 with the lowest

mean 32.7, 32.7, 32.8 and 33.4 respectively, as presented in the summary statis-

tics Table 3.39 where the best quality of selection (selecting the best 6 candidates,∑
= 21) has been selected 410 times for p = 0.5, 435 times for p = 0.6, 414 times

for p = 0.632 and only 324 times for p = 0.7.

In Figure 3.17 the size of groups is m = 2 which means that each time two

candidates are observed together in 12 stages. It gives a slightly better performance

than observing the candidates one-at-a-time, with a quite lower mean and standard
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deviation sd for all values of p as is shown in Table 3.39, where the mean is 30.9

for p = 0.5 with 566 times the optimal case selected (
∑

= 21). For m = 3 the 24

candidates are observed in 8 groups of 3 candidates, the performance continued to

improve except for p = 0.9 which recorded a slight worse performance than in the

case of m = 2, however this could have resulted from the fact that by increasing

the size of group better candidates can be lost. The high value p = 0.9 means that

we accept more early candidates, so sometimes the better candidates are in later

groups while we accept more in the beginning of the process. The same occurred

again for m = 4 and p = 0.8 as presented in Figure 3.19 and in Table 3.39 where the

mean increased from 31.5 for m = 3 to 32.2 for m = 4, while a better performance

is clearly shown for all other values of p, with lowest mean and sd for p = 0.6, 0.632

and highest frequency of selecting the optimal 6 candidates by scoring 975 times for

each.
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Figure 3.16: candidates in groups with N = 24, c = 6 and m = 1



3.5. Selecting multiple candidates observed in groups 86
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Figure 3.17: candidates in groups with N = 24, c = 6 and m = 2
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Figure 3.18: candidates in groups with N = 24, c = 6 and m = 3
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Figure 3.19: candidates in groups with N = 24, c = 6 and m = 4
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Figure 3.20: candidates in groups with N = 24, c = 6 and m = 6
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Figure 3.21: candidates in groups with N = 24, c = 6 and m = 8
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Figure 3.22: candidates in groups with N = 24, c = 6 and m = 12
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In Figure 3.20 the 24 arrived candidates are observed in 4 equal groups, each

with 6 candidates, where the means and standard deviations of the selections are

rather lower than for all previous cases m = 1, 2, 3, 4 with better selection for the

optimal case for most values of p where the frequencies started at 278 times for

p = 0.1, peaked at 1430 for p = 0.5 and ended at 448 for p = 0.9 which is a

significant improvement in the performance. The size of groups m is increased in

Figure 3.21 to be m = 8, this increase leads to further improvement at all levels of

p with selecting the best six candidates 2184 times for p = 0.6, 0.632 as can be seen

in Table 3.39.

The performance in Figure 3.22 has reached the peak when all candidates are

divided into only two groups, each of m = 12 candidates. The shape of Figure

3.22 is different than the usual cases as it is divided into three groups each group

with the same performance. First group when p = 0.1, 0.2, 0.3, the second when

p = 0.4, 0.5, 0.6, 0.632 and the third when p = 0.7, 0.8, 0.9 the results for each group

are exactly the same with mean 24.9, 23 and 24.9, respectively. The reason for that

is when m = 12 we have two groups, when p ≤ 0.3 we accept later candidates which

means that the 6 selected candidates are selected from the second group and in

case p ≥ 0.7 we usually accept earlier candidates which means that the 6 selected

candidates are selected from the first group, while when 0.4 ≤ p ≤ 0.632 the 6

candidates are selected from the two groups. To sum up, results show that larger

group size m tends to be better with some exceptions in case of large p when we

tend to accept early candidates.

In case m = 12, as we mentioned at the start of this section, to make a decision

about whether or not to accept the j-th candidate, j = 1, 2, ..., 12 in the first group,

the probability (3.8) is calculated for each candidate depending on his relative rank

among all the candidates of the first group. Then the best candidate in the first

group r121 is always accepted if p > 0.0068, as P (Y 24
13 (r121 ) ≥ 6) = 0.0068. The second

best r122 is always accepted as well if p > 0.0774, as P (Y 24
13 (r122 ) ≥ 5) = 0.0774.

While the candidate with relative rank 3, r123 is only accepted if p > 0.3202, as

P (Y 24
13 (r123 ) ≥ 4) = 0.3202. The candidates with relative ranks 4, 5 and 6 can be

accepted if and only if p > 0.6797, p > 0.9225 and p > 0.9931, respectively. In
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Figure 3.22, for values of p from 0.1 to 0.9 as considered before, there are only

three different selections for all the runs in the simulations. For 0.1 ≤ p ≤ 0.3 we

accept 2 candidates from the first group and 4 candidates from the second group,

if 0.4 ≤ p ≤ 0.632 we accept 3 candidates from each group and if 0.7 ≤ p ≤ 0.9 we

accept 4 candidates from the first group then 2 candidates from the second group.

Classically, to find the expected number of best selection in 10,000 runs we need to

calculate the probability of the optimal selection in each option. Mathematically

the first p ≤ 0.3 and the third p ≤ 0.9 options are exactly the same, where the

probability is
(12

2 )(12
4 )

(24
6 )

= 0.2427, so the expected number is 2427 which is very close

to our results as presented in Table 3.39, where the best candidates selected 2453

times for (0.1 ≤ p ≤ 0.3) and 2426 times for (0.7 ≤ p ≤ 0.9). While if a moderate

p is used then 3 candidates are accepted from each group, thus the probability is

(12
3 )(12

3 )
(24
12)

= 0.3595 and the expected number is 3596 which is also very close to our

result 3598 as presented in Table 3.39.

In the case of either accepting later (p ≤ 0.3) or earlier (p ≥ 0.7) candidates

the probability of the optimal selection is 0.2427. Let Y be the number of the

optimal selection in the 10,000 orders, then Y has a Binomial distrubution with

parameters (10000, 0.2427) and approximately normally distributed with parameters

(2427, (42.87152)2), then the confidence interval for the expected number of cases

out of 10,000 in which the optimal selection is made is [2343, 2511]. In addition, the

confidence interval for the expected number if 0.4 ≤ p ≤ 0.632 is [3502, 3690].
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N = 24, c = 6 0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9

m = 1

Mean 46.8 41.3 36.6 34.5 32.8 32.8 32.8 33.4 39.8 43.5

sd 14.7 13.3 11.4 10.1 8.7 8.4 8.3 8.7 12.0 13.9

Best 104 220 388 426 410 435 414 324 202 114

m = 2

Mean 43.2 37.5 33.7 31.9 30.9 31.4 31.5 32.1 33.9 36.9

sd 13.6 12.1 9.8 9.51 7.5 7.6 7.6 8.0 8.9 10.6

Best 170 334 427 562 566 524 500 463 316 230

m = 3

Mean 41.9 35.2 33.7 31.3 29.2 29.0 29.1 29.7 31.5 39.3

sd 13.4 10.9 9.9 8.2 6.4 6.1 6.2 6.7 7.6 10.9

Best 178 434 552 589 747 739 711 652 491 147

m = 4

Mean 38 34.8 29.9 28.8 27.6 27.5 27.5 28.5 32.2 34.6

sd 12.3 11.1 7.6 6.1 5.6 5.3 5.3 5.8 8.06 9.22

Best 339 486 770 956 973 975 975 854 420 358

m = 6

Mean 36.4 28.7 27.9 26.5 26.5 26.6 26.6 27.1 28.0 33.9

sd 10.9 7.1 6.6 5.2 5.0 5.0 5.0 5.2 5.9 8.9

Best 278 1114 1092 1397 1430 1292 1292 1048 1147 448

m = 8

Mean 29.9 28.1 27.5 24.9 24.6 24.7 24.7 27.1 27.6 29.3

sd 7.8 6.9 6.1 4,02 3.7 3.8 3.8 5.4 5.8 7.0

Best 1055 1215 1178 2158 2025 2184 2184 1343 1091 1079

m = 12

Mean 24.9 24.9 24.9 23.0 23.0 23.0 23.0 24.9 24.9 24.9

sd 4.4 4.4 4.4 5.13 5.13 5.13 5.13 4.3 4.3 4.3

Best 2453 2453 2453 3598 3598 3598 3598 2426 2426 2426

Table 3.39: Means and standard deviation with different m and p
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The discussion above focuses on selecting multiple candidates observed in groups

of equal size. Here, we apply our NPI method to select multiple candidates from

randomly arriving candidates, the candidates now observed in groups of different

sizes. We illustrate how this works by again considering the example with N = 24

candidates discussed before. Suppose that we are again interested in selecting c = 6

candidates. We consider the reverse order of absolute ranks as given in Example

3.2. The results with different p’s and group sizes are presented in Tables 3.40-3.44,

which give the sum
∑

of the absolute ranks of the selected candidates. These ranks

are listed under ‘Who’ in order of their selection. In Table 3.40 the considered

sizes of groups are m = 2, 3, 5, 4, 6, 3, 1. In this procedure, for p = 0.1, the first

two candidates with absolute ranks 22 and 23 are observed first. Using probability

(3.8), the best candidate in this first group (with relative rank 1, of course) there

will be enough better candidates in the future groups, with probability at least 0.1,

thus the best candidate in the first group is rejected, of course no further candidates

need to be checked in this group. The second group is of size m = 3, which means

that candidates with absolute ranks 13, 11 and 21 are observed together at the same

time, however the best candidate in this group has absolute rank 11 and relative

rank 1 and is still rejected. Then the third group is considered which is of size

m = 5 and includes candidates with absolute ranks 24, 6, 5, 15 and 20. The best

candidate in this group with absolute rank 5 has relative rank 1 and is accepted.

Then the second best with relative rank 2 is checked and accepted as well, but the

third with relative rank 5 has been rejected. Thus the fourth group is considered

with size m = 4, which includes the best candidate who is the selected one in this

group. The followed group includes 6 candidates the best with absolute rank 4 is

accepted but the second best who with absolute rank 9 is rejected, thus we move to

the sixth group. This group of size 3, the candidates with absolute ranks 3, 7 and

2, the best candidate in this group is accepted. Five candidates have been selected

so far a = 5 and we still need another candidate c = 6. Despite that the sixth group

includes the second and the third best, the last candidate is taken from the last

group which of size 1. The sum of the selected absolute ranks therefore is
∑

= 30.

For a higher quality requirement p = 0.5, an early candidate who is the best in the
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second group, with absolute rank 11 is accepted to be the first selected one, then

the candidates with absolute ranks 6 and 5, 1, 4 and 2 are taken from the third,

fourth, fifth and sixth respectively, to achieve a sum of absolute ranks
∑

= 29. For

the highest quality requirement p = 0.99, which is indicate to accept more earlier

candidates, the first and second groups of size m = 2 and m = 3 candidates are all

selected, with ranks 22, 23, 13, 11 and 21, the the best one in the followed group is

selected to reach to 95 as the sum of the selected absolute ranks. In Table 3.44 we

changed the order of two absolute ranks 17 and 3 to be 3 and 17, so the fifth group

still includes 6 candidates, but now they are 4,19,10,9,14,3 and the sixth group still

has 3 candidates, but now they are 17, 7, 2. Some of the results have been influenced

by this change, for example, for p = 0.1 the quality of selection minimised to the

optimal selection
∑

= 21 instead of
∑

= 30, as during the selection process the

first 3 selected candidates are still the same (candidates with absolute ranks 6, 5,

1), but in the fifth group the best candidate in this group became with absolute

rank 3 and the second best became with absolute rank 4, whom both have been

taken. Then the best candidate in the last group is selected from the sixth group

who has absolute rank 2. Also for p = 0.3, the fifth accepted candidate is with

absolute rank 3 instead of 4, as the best candidate in this group became 3 and it

is checked first. The random order of candidates in each group therefore can affect

the selection process, then the quality of selection either Positively or negatively,

depending on the position of each group.

Table 3.41 shows the same procedure with different size of groups, the considered

sizes here are m = 5, 5, 3, 2, 3, 3, 3. For p = 0.1, the first group includes 5 candidates

are all rejected, while two candidates with absolute ranks 5 and 6 are selected from

the second group, the best candidate from the third group, 3 from the sixth group

and the last two candidates are selected from the last group, with absolute ranks 2

and 7, with a quality of selection
∑

= 24, which is better than the previous size of

groups which considered in Table 3.40.

Despite that small p leads to accept later candidates, the quality of selection

is improved when we consider early large size of groups as in Table 3.43. The

considered sizes were m = 7, 6, 5, 1, 2, 3, the optimal selection
∑

= 21, has been



3.5. Selecting multiple candidates observed in groups 93

made for p = 0.1 and p = 0.2. While, in Table 3.42 the large size is considered

later, the optimal selection has been made once with p = 0.1. Furthermore, with

the early large size of groups as in Table 3.43, high level of p gives a better quality

of selection, comparing with the later large sizes as in Table 3.42. For example, for

p = 0.8, p = 0.9 and p = 0.99 the presented quality of selection in Table 3.43 are 40,

40 and 74 respectively, while in Table 3.42 the corresponding quality of selections are

58, 58 and 95, respectively. Therefore, in order to get a better quality of selection

especially with high and low p, it is better to observe the largest possible number

in the beginning of the process.

∑
Who p

30 6 5 1 4 2 12 0.10

21 6 5 1 4 3 2 0.20

29 11 6 5 1 4 2 0.30

29 11 6 5 1 4 2 0.40

29 11 6 5 1 4 2 0.50

49 22 11 6 5 1 4 0.60

58 22 13 11 6 5 1 0.70

58 22 13 11 6 5 1 0.80

58 22 13 11 6 5 1 0.90

95 22 23 13 11 21 5 0.99

Table 3.40: m = 2, 3, 5, 4, 6, 3, 1

∑
Who p

24 6 5 1 3 7 2 0.10

21 6 5 1 4 3 2 0.20

28 11 6 5 1 3 2 0.30

30 11 6 5 1 4 3 0.40

30 11 6 5 1 4 3 0.50

39 13 11 6 5 1 3 0.60

40 13 11 6 5 1 4 0.70

40 13 11 6 5 1 4 0.80

40 13 11 6 5 1 4 0.90

78 22 13 11 21 6 1 0.99

Table 3.41: m = 5, 5, 3, 2, 3, 3, 3
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∑
Who p

21 6 5 1 4 3 2 0.10

29 11 6 5 1 4 2 0.20

29 11 6 5 1 4 2 0.30

29 11 6 5 1 4 2 0.40

38 13 11 6 5 1 2 0.50

40 13 11 6 5 1 4 0.60

40 13 11 6 5 1 4 0.70

58 22 13 11 6 5 1 0.80

58 22 13 11 6 5 1 0.90

95 22 23 13 11 21 5 0.99

Table 3.42: m = 1, 2, 3, 5, 3, 3, 7

∑
Who p

21 6 5 1 4 3 2 0.10

21 6 5 1 4 3 2 0.20

27 6 5 1 8 4 3 0.30

30 11 6 5 1 4 3 0.40

35 11 6 5 1 8 4 0.50

40 13 11 6 5 1 4 0.60

40 13 11 6 5 1 4 0.70

40 13 11 6 5 1 4 0.80

40 13 11 6 5 1 4 0.90

74 22 13 11 21 6 1 0.99

Table 3.43: m = 7, 6, 5, 1, 2, 3

∑
Who p

21 6 5 1 4 3 2 0.10

21 6 5 1 4 3 2 0.20

28 11 6 5 1 3 2 0.30

30 11 6 5 1 4 3 0.40

30 11 6 5 1 4 3 0.50

48 22 11 6 5 1 3 0.60

58 22 13 11 6 5 1 0.70

58 22 13 11 6 5 1 0.80

58 22 13 11 6 5 1 0.90

95 22 23 13 11 21 5 0.99

Table 3.44: m = 2, 3, 5, 4, 6, 3, 1
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3.6 Comparison to a fixed-percentage method

The heuristic method presented in this chapter is particularly aimed at problems

with many candidates, for which dynamic programming cannot be applied. Of

course, other heuristic rules have been suggested for this problem [23, 37, 39] and

research on such methods has mostly been focused on their probabilistic properties

[27, 31, 32]. We have compared our NPI method with several alternatives that are

also computationally straightforward.

In this section we consider the straightforward rule that candidate j is accepted

if and only if rj ≤ γ × j for some value γ ∈ (0, 1), of course only up to the point

when c candidates are selected and automatically selecting final candidates if there

are no other options to ensure that we select c candidates in total. Let us call this

the ‘gamma-rule’.

Table 3.45 provides a study of this selection procedure for N = 10, c = 3 with

various values of γ. It shows the maximum relative rank of a candidate who will

be selected in this case. The first candidate will never be selected in this case as

his relative rank r1 = 1, is never less than γ, for 0 < γ < 1. If γ = 0.1, the last 3

candidates j = 8, 9 and 10 are inevitably selected. For γ = 0.2 the fifth candidate

can be selected if he has relative rank 1 or the following candidate can be accepted

if he is the best candidate thus far and so on. It is worth to note that the worst

candidate cannot be accepted with any value of γ, except of course if needed at the

end of the process.

For a simulation study with 10,000 independent runs with N = 10 the results are

shown in Table 3.46. The gamma-rule clearly performs better than NPI for γ ≥ 0.5,

where the optimal selection has been selected 2634, 2769, 2575, 2578, 2190 and 1660

for γ = 0.5, 0.6, 0.632, 0.7, 0.8 and 0.9, respectively.

According to this simulation for N = 10, c = 3 in Table 3.46 and further sim-

ulations, they all showed that the gamma-rule performs well for small values of

N , but for larger values of N its performance is substantially worse than our NPI

method. Tables 3.47, 3.48, 3.49, 3.50, 3.51 and 3.52 show the summary statistics of

the sums of absolute ranks of the selected candidates in simulations for the case with

N = 10, c = 3; N = 60, c = 10; N = 100, c = 25; N = 200, c = 20; N = 200, c = 40;
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j Select j if rj ≤

γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8 γ = 0.9

1 - - - - - - - - -

2 - - - - 1 1 1 1 1

3 - - - 1 1 1 2 2 2

4 - - 1 1 2 2 2 3 3

5 - 1 1 2 2 3 3 4 4

6 - 1 1 2 3 3 4 4 5

7 - 1 2 2 3 4 4 5 6

8 A 1 2 3 4 4 5 6 7

9 A 1 2 3 4 5 6 7 8

10 A 2 3 4 5 6 7 8 9

Table 3.45: γ percentile rule for 3 out of 10

N = 200, c = 60 and N = 200, c = 80 respectively, with for simplicity the same

values chosen for γ as for p in our NPI method. For example, when N = 10, c = 3

gamma-rule provides better candidates than NPI, especially with γ ≥ 0.5 as illus-

trated in the summary statistics in Table 3.46, but these results gradually changed

with increasing values N and c. Boxplots for the results of these simulations are pre-

sented in Figures 3.23, 3.24, 3.25, 3.26, 3.27, 3.28, respectively. Let us consider the

best possible selection in the case of N = 200, c = 60, namely the candidates with

absolute ranks 1 to 60, leads to sum of 1830, so our NPI method clearly performs

very well for p in the range 0.4 to 0.7. In these 10,000 simulations for each value of

p, this best possible selection was actually made three times, twice for p = 0.5 and

once for p = 0.7. For the gamma-rule the performance is substantially weaker, and

the optimal selection was never made. The main reason why the NPI method per-

forms better in larger N is that it continuously adapts to the number of candidates

already selected and the number still to come, which the gamma-rule does not do.

While for small numbers of candidates this is not necessarily very important, for

large numbers such as in this simulation the positive impact of these adaptations is

very substantial.
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N = 10, c = 3 0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9

γ − percentile

Mean 16.5 15.0 13.8 12.0 9.8 9.2 9.2 8.6 8.6 9.1

sd 4.4 4.4 4.4 4.2 3.7 3.4 3.3 2.8 2.3 2.4

Best 86 179 340 1250 2634 2769 2575 2578 2190 1660

Worst 101 58 37 16 6 1 1 0 0 0

NPI

Mean 13.8 12.3 11.2 10.4 10.1 9.9 9.9 10.2 11.9 12.6

sd 4.5 4.2 3.8 3.6 3.3 3.1 3.1 3.1 4.3 4.3

Best 476 771 1127 1517 1494 1499 1444 1279 941 665

Worst 34 12 2 2 1 0 0 0 14 14

Table 3.46: Gamma-rule and NPI for N = 10, c = 3: summary statistics

N = 60, c = 10 0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9

γ − percentile

Mean 251.1 180.8 112.0 81.7 86.0 93.9 96.3 101.2 108.0 114.7

sd 49.7 48.7 43.8 18.6 12.9 15.2 15.8 17.3 19.1 20.7

Best 0 3 55 29 2 0 0 1 0 0

Worst 0 0 0 0 0 0 0 0 0 0

NPI

Mean 132.0 110.0 96.9 88.0 83.4 82.4 82.4 87.3 91.4 120.5

sd 43.3 36.4 30.6 25.2 20.8 19.3 19.1 23.2 26.0 40.8

Best 21 47 95 111 124 113 109 86 65 17

Worst 0 0 0 0 0 0 0 0 0 0

Table 3.47: Gamma-rule and NPI for N = 60, c = 10: summary statistics
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N = 100, c = 25 0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9

γ − percentile

Mean 1135.4 978.1 816.2 634.6 476.5 468.3 479.0 503.3 537.8 570.3

sd 122.4 120.0 120.0 121.1 82.1 41.0 45.7 41.7 52.1 57.7

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

NPI

Mean 502.0 451.8 424.0 406.0 397.4 399.0 400.1 404.65 443.4 480

sd 94.0 76.4 63.0 52.0 45.0 45.5 46.4 49.5 71.9 89.7

Best 1 3 14 13 17 16 12 6 7 4

Worst 0 0 0 0 0 0 0 0 0 0

Table 3.48: Gamma-rule and NPI for N = 100, c = 25: summary statistics

N = 200, c = 20 0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9

γ − percentile

Mean 1210 387.4 335.1 386.1 431.5 473.4 485.9 511.2 545.5 578.2

sd 241.9 165.9 36.7 47.7 56.3 64.2 66.6 71.4 77.6 83.7

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

NPI

Mean 476.9 389.4 340.1 308.0 290.9 286.3 285.7 291.9 312.5 369.6

sd 155.4 124.6 100.9 79.0 63.0 55.8 54.2 58.5 75.4 111.0

Best 5 6 10 13 9 10 12 10 15 3

Worst 0 0 0 0 0 0 0 0 0 0

Table 3.49: Gamma-rule and NPI for N = 200, c = 20: summary statistics
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N = 200, c = 40 0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9

γ − percentile

Mean 3391 2684 1938 1225 1210 1324 1358 1430 1527 1620

sd 317 313 315 217 85 101 106 116 128 141

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

NPI

Mean 1201 1086 1021 983 964 962 964 986 1016 1156

sd 200 158 127 103 87 85 86 105 126 187

Best 0 0 1 0 5 1 1 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

Table 3.50: Gamma-rule and NPI for N = 200, c = 40: summary statistics

N = 200, c = 60 0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9

γ − percentile

Mean 5558 5020 4461 3850 3171 2580 2534 2617 2798 2965

sd 365 354 347 353 366 254 176 140 162 182

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

NPI

Mean 2290 2155 2084 2040 2025 2025 2028 2047 2139 2233

sd 234 185 149 122 109 110 112 127 180 222

Best 0 0 0 0 2 0 0 1 0 0

Worst 0 0 0 0 0 0 0 0 0 0

Table 3.51: Gamma-rule and NPI for N = 200, c = 60: summary statistics
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N = 200, c = 80 0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9

γ − percentile

Mean 7698 7311 6908 6478 6003 5511 5348 4962 4459 4560

sd 392 383 372 366 368 372 377 389 290 204

Best 0 0 0 0 0 0 0 0 0 0

Worst 0 0 0 0 0 0 0 0 0 0

NPI

Mean 3739 3602 3523 3477 3461 3466 3490 3518 3569 3712

sd 251 201 162 134 121 123 137 157 187 244

Best 0 0 0 0 1 0 0 1 0 0

Worst 0 0 0 0 0 0 0 0 0 0

Table 3.52: Gamma-rule and NPI for N = 200, c = 80: summary statistics

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●●

●

●

●

●
●●

●

●●●
●

●

●

●

●●●●

●
●

●

●
●

●
●
●

●
●
●

●
●

●
●
●

●

●

●

●
●

●
●
●

●

●

●

●●

●●●

●

●
●

●

●

●

●

●

●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●
●
●

●●●
●●

●
●
●

●

●

●
●●

●

●●

●

●

●

●
●

●

●
●●
●
●
●

●

●
●
●

●

●

●

●

●●

●
●
●
●

●

●
●●
●

●

●
●

●

●

●

●

●●●
●

●

●
●●

●

●

●
●
●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●●●
●●●

●

●

●

●●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●●●
●

●

●●

●

●●
●

●
●

●

●

●
●
●

●

●●

●●

●●
●●

●●
●●

●

●

●●●●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●●
●
●
●

●
●

●

●

●

●

●

●●
●●

●

●●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●●
●
●

●
●●
●

●

●

●

●

●●

●
●

●

●
●

●
●
●

●

●

●

●

●●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●
●
●
●
●

●●

●

●●●

●

●●

●

●

●

●
●

●

●●●
●
●

●

●

●

●

●

●

●
●●

●

●
●●
●
●●

●

●●

●
●

●

●

●●●
●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●
●
●

●

●

●
●●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

●●●

●

●●
●
●

●

●
●

●

●
●
●

●

●
●
●
●
●

●

●●

●
●

●

●
●

●

●
●

●

●●●●
●
●
●
●

●
●●●

●
●

●●

●

●
●●
●

●

●

●

●

●●

●

●
●

●

●

●●

●
●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●●●
●

●

●

●

●
●●

●

●●●●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●
●
●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●●
●

●
●

●●●

●
●●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●
●●
●
●

●

●

●
●

●

●

●

●

●
●●
●

●

●
●●●

●

●
●
●
●
●
●

●

●●●
●●●

●
●●
●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●
●●
●●

●

●
●●

●

●

●
●

●
●
●
●●

●

●

●

●
●
●
●

●●
●
●●

●

●

●

●

●
●
●

●

●●

●
●

●

●●

●
●●

●●
●

●

●
●

●
●
●
●
●

●

●●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●
●●●

●

●
●
●
●
●●

●

●

●

●
●
●
●

●

●

●

●
●●●
●

●●

●●
●●

●●

●

●

●

●

●

●

●
●

●

●
●
●
●
●
●●●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●●
●

●

●
●●●
●
●●

●

●

●
●
●
●

●

●●
●
●

●

●

●

●

●

●
●

●

●●●●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●●

●
●

●

●

●

●●●●●
●●

●

●

●●
●

●

●

●
●
●
●
●

●

●●

●

●

●

●

●

●●
●●

●
●

●

●

●

●●

●
●
●

●

●

●

●
●

●
●

●

●●

●
●●
●●

●

●
●
●
●

●

● ●●

●●●●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●
●
●

●

●
●●

●
●
●

●

●●
●

●

●
●●●
●
●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●
●
●
●

●
●

●
●
●

●

●

●●

●

●
●

●
●

●●●

●●

●
●

●

●

●

●●

●

●●

●

●●

●

●
●
●

●

●
●

●

●

●●
●
●

●●

●
●●
●

●

●
●

●
●●
●
●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●
●
●
●●●
●

●

●●

●

●

●
●●●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●●●
●

●●

●

●
●

●
●
●●

●
●

●

●

●●●●●●
●

●

●

●●

●

●

●

●

●
●

●

●●●

●

●
●
●●
●

●

●●
●●

●
●●
●
●

●

●
●

●
●●
●
●

●

●
●

●

●●
●●

●

●●

●

●
●●

●

●
●
●

●

●●●●●●

●

●●●

●

●

●●
●

●●

●

●
●

●●

●

●
●
●

●
●●
●
●●●

●●●

●

●

●

●

●●

●●

●●

●●

●

●●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●

●

●●
●
●
●●
●

●

●

●
●
●●
●

●

●●●●
●

●

●

●

●●

●
●●
●

●

●●

●●

●

●

●

●

●
●
●●

●

●

●●

●

●
●

●

●
●●●●●

●●

●

●

●
●

●

●

●
●●

●

●

●
●
●●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●●

●●
●

●

●●

●●
●●
●

●●

●

●

●

●

●

●
●
●

●
●

●
●

●

●
●

●

●

●

●●●

●
●

●

●
●

●
●

●

●
●●

●

●
●

●
●●
●
●●●

●

●

●
●
●●

●

●

●
●●

●

●●
●●
●

●●

●

●
●●

●●

●

●

●●●
●

●

●

●

●
●
●
●
●

●

●

●●●
●●

●
●

●

●●

●●
●

●●

●

●
●

●
●
●

●

●
●●

●

●●
●

●
●
●
●

●

●

●●●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●
●
●●

●

●●
●
●●
●

●

●

●
●

●

●
●
●●●
●
●
●

●
●
●●

●

●
●
●
●●

●

●

●

●

●

●

●

●
●●

●●

●●

●●

●
●

●

●

●●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●
●

●
●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●
●●

●

●

●●
●●

●

●●
●

●

●
●●
●

●

●

●

●

●

●

●
●
●

●

●

●●●
●

●

●

●
●●
●●

●

●

●

●●

●

●
●

●
●
●

●
●
●
●

●

●
●

●

●●

●
●●
●

●

●

●
●
●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●
●
●

●

●

●

●

●

●
●
●
●

●

●
●
●
●●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●

●●
●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●●
●●

●●

●
●
●

●

●

●
●●
●
●●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

●

●
●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●●

●
●●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●●
●●●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●●●●
●
●

●

●●

●

●●

●

●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●●●

●
●
●

●●
●

●
●

●

●
●

●●
●

●
●
●●

●
●
●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●●
●
●
●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●●●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●
●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●
●

●●
●●

●
●
●
●

●

●
●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●

●

●
●
●●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●●

●

●●

●●

●

●

●

●●●

●

●
●●
●
●
●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●
●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●●

●
●

●

●
●

●

●●
●
●

●

●
●
●
●
●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●●●

●

●

●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●
●

●

●●
●●
●●
●

●

●

●●

●
●

●

●
●

●

●

●
●
●

●

●
●

●●

●●

●

●
●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●

●

●●

●

●

●

●
●

●

●
●●

●
●

●

●●

●
●

●

●●
●●

●

●

●

●
●

●

●

●
●

●

●

●●●
●
●

●
●
●●●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●
●
●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●●

●●

●

●

●

●●

●●

●

●

●

●
●●
●

●
●

●

●
●
●
●

●
●●

●

●
●

●
●●
●

●

●
●●

●

●

●
●●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●

●

●●●●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●

●
●

●●
●
●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●
●

●●
●

●

●●

●
●

●

●

●

●
●

●●

●
●●

●

●

●
●
●

●
●●
●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●
●

●

●

●●

●

●

●
●
●
●

●●

●

●●

●

●●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●●
●●●

●●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●
●
●
●
●

●

●

●

●

●●
●
●●●●●
●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●
●●

●
●
●
●

●

●

●●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●●●
●
●

●

●

●

● ●
●●

●

●
●

●

●

●

●

●●

●

●
●

●

●●

●
●●●

●

●●
●●
●●●●●
●
●●
●
●●●

●

●

●

●●●
●

●

●
●

●

●●●
●
●●
●
●●●●
●
●●●●

● ●

●

●●●●
●●●●
●●
●

●●
●
●

●●●
●●

●●●
●
●

●

●●
●

●
●

●

●●●●

●

●●●●
●
●

●

●

●

●●●●●●
●
●●●●

●
●
●●●●
●
●●

●

●

●

●
●
●●
●●●●●
●●

●●

●●●●●
●●

●
●●
●●
●●
●
●
●●●
●●●●●

●●●●
●

●
●
●

●

●

●

●

●

●●●

●
●●

●●●●●●
●●

●

●
●
●●

●

●

●
●
●●
●●●●●

●●

●

●●

●
●
●●●

●

●
●●
●

●●
●
●
●●●
●●
●

●

●
●
●
●●●●
●●●●●
●●
●
●
●

●

●●●●●
●

●
●

●
●
●
●
●
●●●

●

●
●●
●●●
●
●
●●
●●
●●●●
●●

●

●
●
●●
●
●

●

●●

●●●

●
●
●●
●●

●●●●
●●
●●●●
●

●

●●

●

●●

●

●

●

●
●●
●●
●
●
●●

●

●●●●●
●●●

●

●
●

●

●
●
●
●
●
●
●
●●

●

●

●
●●●
●●

●

●
●●●
●
●

●
●●
●●

●

●●●●
●
●
●

●

●

●
●

●
●

●

●

●
●

●●●

●
●●●
●
●

●

●●
●●●●

●

●
●
●
●●
●●●
●●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●●●●●
●

●●

●

●

●

●●
●
●
●●●

●
●●●●●

●

●

●

●

p=0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9 G=0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9

10
0

20
0

30
0

40
0

Figure 3.23: NPI (p) and Gamma-rule (G) for N = 60, c = 10
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Figure 3.24: NPI (p) and Gamma-rule (G) for N = 100, c = 25
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Figure 3.25: NPI (p) and Gamma-rule (G) for N = 200, c = 20
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Figure 3.26: NPI (p) and Gamma-rule (G) for N = 200, c = 40
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Figure 3.27: NPI (p) and Gamma-rule (G) for N = 200, c = 60
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Figure 3.28: NPI (p) and Gamma-rule (G) for N = 200, c = 80
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3.7 Improving the subset of accepted candidates

In this section, we consider the slightly more complicated rules which are such that

candidate j is selected if and only if his relative rank is lower than or equal to the

median or the mean of the relative ranks, at that stage j, of the already selected

candidates. So for these rules the relative ranks of already selected candidates are

updated at every stage, and a candidate is selected if that improves (or keeps the

same) the median or mean of the relative ranks of all selected candidates. Again,

with these rules one also stops once c candidates have been selected, and one accepts

automatically the final candidates needed to ensure selection of c candidates.

To explain the idea, suppose that we want to select c = 3 candidates from a total

of N = 7 candidates. Suppose further the absolute ranks for these 7 candidates are

5, 6, 4, 2, 1, 3 and 7, and we will observe them sequentially. Let us start by the

median first, so candidate j, is accepted if and only if his relative rank is less than

or equal to the median of the relative ranks of the already selected candidates. So,

the first observed candidate is the best so far and his relative rank is equal to 1,

which is equal to the median, thus the first observed is the first accepted candidate

as it is always the case. The second candidate is worse than the first one, so the

second candidate has relative rank 2, and the one selected candidate so far now still

has relative rank 1. So the median is still 1, which means the second candidate is

rejected. The third candidate is the best so far with relative rank 1 and the first

accepted candidate now has updated relative rank 2, so the median of the accepted

candidates is 2, which means the third candidate is selected as the second accepted

candidate. The fourth observed candidate is better than all the observed ones, this

also better than the already selected ones, so of course gets selected , leading to∑
= 5 + 4 + 2 = 11.

As for the mean, suppose again we have N = 10 candidates and we are interested

in selecting only c = 3 candidates. Assume that the 10 candidates arrived randomly

in the following order 3, 1, 9, 4, 2, 7, 8, 5, 6, 10. As before, the first observed

candidate is accepted as his relative rank is equal to his mean. The second observed

one is better than the first selected candidate, so his updated relative rank is 1

and the accepted candidate has updated relative rank 2. Thus the second observed
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candidate is accepted. The third observed candidate has relative rank 3, as he is

the worst yet, thus he is rejected, as the mean of the accepted candidate is 1.5, the

fourth candidate is also rejected. The relative rank of the fifth candidate is 2 and

the updated mean of the accepted ones is 2, which means the fifth is accepted and

the process is stopped, with
∑

= 3 + 1 + 2 = 6.

These two methods, indicated by ‘Median’ and ‘Mean’, were also compared to

NPI via simulations, the results for the case with N = 200 and c = 20 are presented

in Figure 3.29. As was the case when the gamma-rule was used, these two methods

perform worse than the NPI method and this is mainly because they do not adapt

to the number of candidates already selected or to the number of candidates still to

come in the process.

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●●

●
●

●

●

●

●●

●

●

●
●
●●

●

●
●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●

●●

●

●●

●

●

●

●●

●

●
●
●

●
●●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●
●
●

●

●●

●

●

●

●●

●

●●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●
●
●

●
●

●
●

●

●
●
●

●

●

●
●●

●
●
●

●●●

●
●

●●

●
●

●

●

●
●

●

●

●●

●●

●

●
●

●
●

●

●
●

●
●

●●
●●●
●●
●
●●●●

●

●●●●
●●
●

●

●●

●

●

●

●●

●

●●

●
●

●

●

●

●
●
●
●

●

●

●

●

●●
●

●

●
●

●●
●

●

●●
●
●
●

●

●

●
●

●

●

●●

●

●●
●

●
●

●

●

●

●

●

●

●●
●
●

●
●●●
●

●

●

●
●

●●●●

●

●

●

●

●●

●●
●●
●

●

●
●●●
●●
●

●

●●
●

●

●

●

●

●

●

●●●
●●

●●

●
●●

●
●
●
●

●●

●

●
●
●
●
●
●●
●●

●
●

●
●

●

●

●●●
●●●●
●●

●

●

●●
●
●

●

●●●●

●

●●
●

●

●

●
●

●●
●

●
●

●●

●

●●

●
●●
●

●

●●

●
●
●
●
●
●

●
●

●
●
●
●

●●
●
●●
●
●

●

●
●

●●
●

●●●
●
●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●
●

●●

●

●
●

●

●●

●

●

●

●●

●

●●
●
●

●

●
●

●●

●

●
●
●
●

●

●
●●●
●
●

●

●
●

●
●

●
●

●

●
●

●

●●
●●●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●●
●
●

●
●

●

●

●●
●

●●

●

●

●●
●●●

●
●
●

●

●

●

●●
●
●●

●
●
●●●

●

●●

●
●
●●
●

●

●
●●
●

●
●

●

●
●

●
●
●●

●●
●
●

●

●
●

●

●●
●
●

●
●
●●●

●

●
●●●●●
●
●
●
●●
●●●

●
●

●

●

●
●
●

●

●●
●●●
●●
●
●●

●

●
●

●

●

●

●

●●●
●

●

●

●●

●● ●

●●
●
●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●●●●●

●

●
●
●
●●●
●●

●

●

●
●

●
●●
●
●

●●
●
●●●

●

●
●
●

●

●●●●
●●

●
●

●
●●

●

●

●●
●
●

●

●

●

●●
●●
●

●●●
●

●
●
●●
●
●

●

●
●

●
●●●●●●●

●

●

●

●●●●

●

●●●●●●●

●

●●●
●
●
●
●
●

●●●
●

●

●

●●●
●

●●●

●

●

●
●●
●●
●
●●●
●●

●
●

●
●

●●●●●

●

●
●
●

●

●

●●

●

●
●

●

●●

●●●●●
●●
●
●●●
●

●

●

●

●

●

●

●●●●●
●

●●●●

●

●

●

●

●
●●
●
●●●
●
●

●

●

●

●
●

●

●

●●●● ●

●●

●

●

●

●●●
●

●
●
●

●
●

●

●●●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●
●●
●
●●

●●
●

●

●

●

●

●

●●
●
●

●

●
●

●
●●●●

●
●

●

●
●

●

●
●●●●●

●

●

●

●●
●
●●●
●
●
●
●

●

●

●

●
●●●●

●●
●

●

●
●

●

●

●

●
●
●
●

●●●
●

●●

●

●●
●

●
●

●

●

●
●

●
●●●

●

●

●

●
●●

●

●●
●
●

●

●

●
●●
●●

●

●
●

●
●●

●

●●
●

●●●●

●●

●
●
●
●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●●
●
●●

●

●

●
●●●●●●●
●

●
●
●●
●
●

●

●
●●
●

●

●
●

●
●
●

●
●
●●●●

●

●
●
●

●
●

●

●

●●
●●

●
●●●
●
●

●

●●
●

●

●●●

●

●●●
●
●●
●

●●

●

●

●
●
●

●●●

●●●●●

●
●

●●●

●

●●

●
●
●●
●
●●●●●

●

●●

●

●●
●●●

●

●●
●
●
●

●
●

●
●●●●
●
●

●●
●
●●

●

●
●

●
●●
●
●●●●
●●
●

●
●
●
●
●●

●

●

●●

●●●
●
●
●
●
●●
●

●

●

●
●●
●●
●●

●
●
●
●
●
●●
●
●

●●

●
●

●

●
●
●
●
●

●●

●●●●●
●●

●

●

●
●●●●
●●

●●

●
●
●●●●

●

●

●●●

●

●
●

●
●
●
●

●●

●

●
●●

●
●●

●
●●
●●●

●

●

●

●●

●

●
●●●●●

●

●

●

●●

●

●

●

●

●

●●
●

●

●
●
●

●

●●●
●

●

●●●●●●●●●
●
●●●
●●

●

●
●

●

●
●●

●●
●●

●

●
●

●
●●
●

●

●

●

●●●
●●

●

●●
●●●
●●
●
●●●●●

●

●
●
●●

●

●●

●
●
●
●
●

●

●

●●

●

●
●

●

●
●●●
●

●●
●
●
●
●●
●
●
●
●

●
●

●●

●

●

●

●

●●

●

●
●
●
●●
●
●●
●
●●●

●

●

●

●
●
●

●
●
●

●

●
●●
●
●●
●●
●●●●
●

●

●
●●
●
●
●
●
●●
●●

●

●
●
●
●

●
●
●

●●

●

●
●
●
●
●
●●
●●
●●

●
●
●

●●

●

●

●●

●●
●
●

●

●

●

●

●

●●●
●
●

●●●●
●●●●●●●●
●
●●
●●●

●

●

●●

●●●
●●
●●
●

●●

●

●

●●
●●●

●
●
●●
●

●

●

●●●
●
●●●

●

●●

●

●●
●●
●

●

●

●
●

●●

●●

●

●

●
●
●●●
●
●●

●●●

●●●●

●

●●●●
●●●

●

●

●
●
●

●●

●

●
●●

●
●

●●●
●

●

●
●
●
●
●●●

●

●
●
●●●●
●
●

●

●
●●
●
●
●●
●
●
●●
●●
●

●●
●●●●●

●

●
●

●●

●

●●●

●

●

●

●
●
●

●●●●
●●
●●

●

●
●●
●

●
●●
●
●
●

●

●

●●

●
●●●●
●
●

●
●●●

●

●●●
●●
●

●
●
●●●

●

●
●

●

●
●
●
●●●●●

●

●●

●●
●
●
●

●

●

●

●
●●

●
●●●●●
●

●
●●●●●●●
●●●
●●●●
●
●●

●

●

●
●
●
●
●●

●

●

●●●●
●
●●●

●

●
●●
●
●
●●
●

●●
●
●●
●

●●
●

●
●●●
●
●
●

●

●

●●
●●
●

●
●
●●●●
●

●

●●●●

●

●●● ●
●
●
●
●●●●●
●
●●

●

●

●
●●●

●●●●●
●●●
●
●
●●●
●
●●
●
●●
●
●●●●●
●
●●
●
●
●

●

●
●
●
●
●
●
●
●
●

●
●

●
●

●

●
●●●
●●●●
●
●
●
●●●●
●
●●

●●

●●
●
●●●●●●

●

●

●

●●
●
●
●●
●
●●●●●●
●
●
●●●●●●
●
●
●
●
●●

●

●
●
●●●
●
●●●
●

●

●●●

●

●
●

●●●

●
●
●
●
●●●●
●●
●●●●●
●
●●●

●
●
●
●

●

●●
●
●●
●
●
●
●

●
●

●

●
●
●

●●●
●●●●

●

●
●
●●
●●●
●●
●
●
●●●

●

●

●●●

●●

●●●

●●
●
●●●

●

●●
●●
●

●●
●

●

●

●●
●
●

●●●

●●
●
●

●●

●
●●●

●
●●
●
●
●●
●
●
●●●●●●●●

●

●●●

●

●

●
●●
●●●

●
●
●●●●●

●
●
●
●
●
●

●

●●●●●

●
●

●●●

●

●
●
●●

●

●●
●
●●●●
●●●
●

●

●●●
●
●●●●
●
●
●●
●
●●●
●
●
●●

●

●●●●
●
●
●
●●

●

●●

●

●●●●●●

●

●

●

●
●
●
●
●
●

●
●●●●

●

●●●●
●●
●●●

●

●
●
●

●

●
●
●●●

●

●
●●
●
●
●●●
●●●

●

●
●

●

●

●
●
●●
●

●●●
●

●

●●●●●
●
●●
●●

●

●

●

●

●
●●

●
●●
●
●●
●●●●
●
●●

●

●

●
●
●●●●●
●●●
●●
●●
●
●●
●●
●●
●
●
●●●
●●●●●●●●
●
●●
●
●
●

●

●

●
●
●
●
●●●

●

●●
●

●

●
●
●●
●●●●
●
●●
●
●●
●●●●

●
●
●●
●●●
●
●

●

●

●

●●
●●●

●
●●●●
●
●
●●●●●

●

●
●●

●

●●●●●
●
●●●●

●

●●

●

●
●
●●●

●

●●
●●
●●
●●●
●●●
●
●●
●
●●
●●
●●

●

●●
●
●●
●
●
●●●
●

●

●

●

●
●
●
●

●●

●
●
●

●

●●●
●

●●●
●
●
●

●
●●
●●
●●●

●●●●
●●

●●
●●●

●
●●●●

●

●●●●
●●●●

●

●

●
●
●●

●●●

●

●

●●

●●●
●●
●●

●●●

●
●

●
●●●
●●●●
●
●●
●
●
●●●●●
●●

●●

●

●

●
●
●
●

●
●
●●
●●●
●●

●
●

●

●●
●
●

●

●
●
●●●●●

●
●

●●
●●●

●

●
●

●●

●

●
●●●
●●●●●●
●●●●

●

●

●
●
●●●
●

●

●
●
●●

●

●●●●
●

●
●
●

●●

●

●
●
●●●●●●

●

●
●
●
●●
●
●
●●●
●
●

●●●●
●
●

●●

●

●
●

●●

●

●

●●
●
●

●

●

●
●●
●
●●
●●●●

●

●●

●

●●

●

●

●

●●●●
●●
●●●●
●
●
●
●●
●
●

●

●●
●● ●

●●●●●
●
●●

●●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●
●●●
●●
●●●●
●●
●●●●●
●●
●●●

●

●●●

●

●
●●●

●

●
●
●●●
●
●●

●
●

●

●●

●

●●●●●●●
●

●

●●

●●

●
●

●●

●
●
●●
●●
●●●●
●
●●●●●●●
●
●

●

●●
●●

●

●●●
●●●

●

●

●

●

●
●
●●●●

●
●●●●

●
●

●

●

●
●
●

●
●●

●

●

●

●
●●

●

●
●●●●
●

●

●
●

●
●
●●●●●●
●
●●
●

●

●

●
●
●

●

●●
●

●●●●
●●
●
●
●
●

●

●
●●●
●

●

●

●
●●●

●

●●●●
●
●●

●●
●

●
●

●

●

●●

●

●
●●●●●
●●●●

●
●
●●

●●
●
●●

●

●●

●

●
●●●●
●
●●
●
●●

●
●

●

●

●
●●

●●●

●

●

●

●●
●●

●

●
●

●

●

●●●●●
●

●

●
●

●

●

●

●●

●

●●

●
●
●●
●

●●●

●

●●
●

●

●●

●●

●●

●●
●
●

●

●
●

●●●●
●

●

●●●●●

●●

●

●

●

●

●
●
●●
●
●
●●●●●●
●
●

●

●●●
●
●

●

●

●

●●
●
●

●

●

●

●
●●

●
●
●●
●●●●
●

●

●
●
●
●
●
●
●

●
●●

●

●

●

●

●

●●

●
●
●

●
●●●

●

●●
●

●●

●

●

●

●●
●
●●●
●

●

●
●
●
●●●●
●
●●●●●
●●
●

●●●●●

●

●

●

●

●

●

●
●
●

●●

●●●●●

●●

●

●

●

●●
●

●
●●

●

●
●
●●

●

●●●

●●●
●●●●●
●●
●

●

●
●●●●●
●●●●●
●

●

●●
●

●

●

●●
●●

●
●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●●

●
●●
●

●●●●●
●

●●
●
●
●
●

●●●●●●

●

●●
●

●

●●

●

●
●

●

●
●●
●●
●●
●
●●●●
●
●
●●●●●

●

●●
●

●

●
●
●

●

●
●
●
●
●●
●●●●●
●●●●●●

●
●
●●●●
●●

●

●

●●

●

●●

●

●
●●●●

●

●
●●●
●●

●
●
●

●

●

●

●

●
●

●

●
●●
●

●
●

●

●

●

●●

●

●●●●
●
●

●

●
●

●●
●●
●
●
●●●●
●

●

●●●
●

●

●
●
●
●
●

●
●●●

●
●●
●

●
●
●
●

●
●

●

●●
●

●

●●

●
●

●

●●
●●

●

●●
●●
●
●●
●
●

●
●
●●

●
●

●

●

●●●

●●
●
●
●

●

●
●●

●

●

●

●
●

●

●
●
●●
●●●
●
●

●

●
●
●●●
●
●

●

●●

●
●
●
●●

●

●

●

●

●

●

●
●

●●●
●●

●

●
●●

●

●
●
●

●

●

●
●

●

●●
●
●

●

●●
●●●

●

●

●
●
●
●●●●

●

●

●

●
●
●
●●
●

●
●

●

●

●●

●

●
●

●

●●

●

●

●●
●
●

●

●

●
●
●
●
●●

●

●

●

●

●
●●
●

●

●
●

●

●
●

●
●●
●
●●
●

●
●

●

●

●
●
●
●

●

●

●

●
●
●●

●

●●●●

●
●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●●

●

●
●
●

●

●

●

●
●
●

●
●●

●

●

●
●

●

●●

●

●●●
●

●

●●●●

●●●
●●

●
●●●
●
●

●●
●●●●

●

●●

●

●

●
●
●

●

●

●

●●●
●●●
●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●●●●

●

●

●

●●
●●

●

●●
●
●
●

●
●
●
●
●●
●

●

●●●

●

●
●
●

●
●

●
●

●●

●
●
●

●●●
●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●●●●
●
●●

●●

●

●
●
●

●

●●
●
●

●
●

●

●

●

●●●
●●
●
●
●

●●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●
●

●
●

●
●●
●

●

●

●●

●

●●●

●
●

●

●

●●

●

●
●●

●
●

●

●●

●

●●●●

●

●

●

●
●

●

●●
●
●
●
●●

●
●
●●●

●

●

●
●
●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●●

●

●

●
●●

●

●

●
●●●

●●
●

●

●

●
●

●

●●
●

●
●

●
●●

●●
●

●

●●
●
●

●

●●●
●
●
●
●●
●●
●

●

●
●

●

●

●●

●

●
●

●●

●

●

●●●
●
●●●●

●

●
●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●
●
●
●●●

●

●

●

●

●

●
●

●

Median Mean p=0.1 p=0.2 p=0.3 p=0.4 p=0.5 p=0.6 p=0.632 p=0.7 p=0.8 p=0.9

50
0

10
00

15
00

20
00

25
00

Figure 3.29: Median and mean improving methods and NPI for N = 200, c = 20

N = 200, c = 20 0.1 0.2 0.3 0.4 0.5 0.6 0.632 0.7 0.8 0.9

NPI

Mean 477.6 387.8 339.1 307.8 290.3 285.2 284.8 291.7 313.2 372.3

sd 152.7 122.0 99.5 78.5 61.9 53.3 52.0 58.5 75.8 112.5

Best 2 7 10 6 17 12 8 8 3 3

Worst 0 0 0 0 0 0 0 0 0 0

Table 3.53: Means and standard deviation with different p, 20 out of 200
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3.8 A randomised procedure

The heuristic NPI procedure presented in this chapter is fully based on the prob-

ability (3.1) for the event that there are at least c − a (the remaining required

number) candidates still to come who are better than the currently considered can-

didate j. The procedure is deterministic in the sense that candidate j is accepted

or rejected with certainty, based on comparison of probability (3.1) with a chosen

threshold value p. If the complementary event happens, namely that the number of

remaining candidates better than candidate j is less than the required number yet

to be selected, it would be best to select candidate j. Therefore, one could consider

explicitly that candidate j is needed with probability

P (Y N
j+1(rj) < c− a) = 1− P (Y N

j+1(rj) ≥ c− a) (3.9)

This suggests a randomised selection procedure, as alternative heuristic method

to the one presented above, where candidate j is accepted with probability (3.9)

and thus rejected with probability (3.1). We illustrate this procedure below for

selection of candidates who are considered one-at-a-time, we also compare it to our

deterministic heuristic method as introduced above. It can also be implemented

for candidates arriving in groups, but it would of course not be sensible to then

randomise for each candidate individually, as that may lead to the best candidate

on one day being rejected and the second best candidate on the same day being

accepted. Hence, to apply such a randomised heuristic method for the case with

candidates arriving in groups, we recommend to first decide on the best candidate

for the day via randomisation, and only if this candidate is accepted to consider

selecting the next candidate too, and so on. This is easy to implement with a

similar adaptation of the algorithm as presented in Section 3.5.

Restricting attention to the case of candidates arriving one-at-a-time, this ran-

domised procedure has the important property that the probability of candidate

j being accepted decreases as function of his relative rank rj. Of course, the de-

terministic procedure proposed in Section 3.3 also has this property, but with the

probability of candidate j being accepted equal to 0 or 1, for high or low values of rj

respectively. The performance of the randomised procedure is investigated below,
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including a comparison with the deterministic procedure. One clear advantage is

that it does not require choice of the somewhat arbitrary value of the threshold p

used in the deterministic procedure, so arguably the randomised procedure is even

more straightforward to implement.

To illustrate this idea a small example is provided. Suppose that a total of

N = 7 candidates arrive in a random order as explained in Figure 3.30 and we are

interested in selecting c = 2 candidates. The interviewer checks them one by one.

The relative rank of the first candidate is 1, in order to make the decision to either

accept or reject this candidate the probability 3.1 must be calculated. This is 0.86

which is less than the random selected value q1 = 0.93 drawn randomly from the

uniform distribution, so the first candidate is accepted, as indicated on the figure as

(A). The second candidate is worse than the first candidate so he has relative rank 2,

with probability 3.1 equal to 0.95 and a random selected value 0.39, which indicates

to the second candidate is rejected as P > q2. Despite that the third candidate is

better than the first and second observed candidtes and his probability is equal to

0.57 which is not a good indicator for getting a better candidates in the future ones,

he got a smaller value of q3 = 0.08. So, the third is rejected as well as the fourth

and the fifth, while the probability of getting a better candidate after the sixth is

0.29 with a random value q6 = 0.68, so the sixth candidate is taken as the second

selected candidate. As illustrated below (3.30) the third and last candidates have

accepted with true ranks 1 and 6 respectively.

Figure 3.31 presents the results for a simulation study for 10,000 runs to select 40

candidates out of 200 candidates by our NPI method and the randomised procedure

(R). This randomised procedure does not perform well for our sequential acceptance

problems when compared to the NPI method. This is due to the fact that the effect

of such randomisation is that excellent candidates have a positive probability of

being rejected while poor candidates have a positive probability of being accepted,

both of these decisions do not help to select the strongest group.
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0.97 
 

0.71 
 

2 

 

0.29 
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Figure 3.30: Randomised procedure 2 out of 7
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Figure 3.31: Simulation for randomised procedure and NPI for N = 200 , c = 40
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3.9 Concluding remarks

The nonparametric predictive approach to sequential acceptance problems, as pre-

sented in this chapter, provides a heuristic solution with the advantage of fast com-

putation and has been shown to perform well. The success of this approach suggests

that similar heuristic methods could be of use in other problems where exact optimi-

sation methods are computationally infeasible as is often the case for so-called online

decision problems [38]. This opens up an interesting area of research, particularly for

decision problems that can naturally be formulated in terms of future observations,

as the NPI approach has been developed particularly for inference on future obser-

vations. Identifying suitable problems and developing NPI-based heuristic solution

methods provide interesting research challenges that may have substantial impact.



Chapter 4

Conclusions and Future Research

This chapter provides a short summary of the main results presented in this thesis,

and discusses important challenges for future research.

4.1 Conclusions

In this thesis we have introduced Nonparametric Predictive Inference (NPI) for two

acceptance decisions problems, where new solutions for acceptance sampling for

attributes and for sequentially selecting one or more candidates from a group were

presented and discussed in detail.

In Chapter 2 we introduced a generalisation for the NPI approach for Bernoulli

random quantities presented by Coolen [7] when the interest is in the number of suc-

cesses in future items, with known information on the number of successes in tested

items. We presented the application of NPI to acceptance sampling for attributes,

including two types of tests. The first type assumes that tested items cannot be used

anymore, it is called ‘destructive testing’. In the second type, a tested item that

functioned well can still be used after the test, it is called ‘non-destructive testing’.

For a single sampling plan just one sample of size n was sampled from a batch of

items of size N . An extension of the single stage sampling to two-stage sampling is

also considered and discussed with numerical examples. In most acceptance sam-

pling situations, the idea is to sample a few items to decide on acceptance of many

items. In the NPI approach, however a large number of items need to be tested in

109
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order to accept relatively few, this is due to the very high quality requirement and

the fact that this must be proven by the data only.

In Chapter 3 the NPI approach to sequential acceptance problems was consid-

ered. First we considered selecting only one candidate from a group of N candidates

who arrive in a random order. NPI has shown a good performance with the advan-

tage of fast computation and flexibility. Some special cases were also provided and

compared with our heuristic method. In case we are interested in selecting the

best candidate, NPI-BO was suggested and compared with the optimal solution by

Lindley. However, NPI-BO with a specific p gives an optimal performance to this

problem exactly as Lindley’s performance. Also, NPI with a non-constant quality

requirement NPI-NC, was suggested in this chapter which has shown a good perfor-

mance but not as good as the NPI with constant values. This approach has been

extended in order to select c > 1 candidates. We started by considering the case

of candidates arriving one-at-a-time. NPI provided a good performance especially

with large N and c, compared to some other methods such as a fixed-percentage

method, methods that improve the subset of accepted candidates and a randomised

procedure. Of course, this is due to the fact that NPI takes into account how many

candidates have been accepted so far and how many candidates one still needs to

select.

Then we have explored the generalization of this situation with candidates being

observed in either equal groups of size m or in if the groups varying in size. An

example was used to show that due to the information for individual candidates not

always being identical when using different group sizes, it is not always beneficial to

see candidates in larger groups. Overall, in case of observing candidates in groups,

NPI approach has achieved best performance for p in the range of 0.5 ≤ p ≤ 0.7.

Of course, in most cases it is better to see more candidates together as was shown

in simulations.
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4.2 Topics for future research

In this section we discuss a few possible areas for future research which build on the

work presented in this thesis. All these areas would add to the NPI methodology

for acceptance decisons.

4.2.1 Acceptance sampling

The results presented in Chapter 2 only consider very basic acceptance sampling

scenarios, several possible generalizations provide interesting challenges for research.

For example, inclusion of costs in (multi-stage) sampling provides interesting oppor-

tunities for research, while also careful consideration of the possible use of lower and

upper probabilities in negotiations between producers and consumers raises interest-

ing questions. For scenarios where observations remain categorical, but with more

than two unordered categories, for example if specific failure modes are taken into

account, the recently developed NPI theory for categorical data [11] can be applied.

For real-valued observations, related theory of NPI with applications to statistical

process control has been presented by [1, 2], generalization of this also provides in-

teresting research challenges. Other statistical methods that quantify uncertainty

via lower and upper probabilities have been presented in the literature, for example

robust-Bayes like methods as presented by Walley [43,44], and it will be interesting

to apply such models to basic acceptance sampling problems and compare them

with the results of the NPI approach presented in this chapter.

4.2.2 Sequential acceptance decisions

Generalization of the problem considered in Chapter 3 raises interesting questions.

For example, if we do not only have the relative rank of a candidate but a real-valued

measurement, then nothing would change with regard to probability (3.1) except we

would get lower and upper probabilities [3] for a number of possibly interesting

events, e.g. if we want to select a group with sum of absolute ranks at most a

specific value, and we could consider other rules and criteria for ‘good’ selection. It

is also of interest to study the use of more general loss functions (or utility functions)
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related to such decision processes in our approach. Many variations to this sequential

acceptance decision problem have been studied [23,40,41] and these also provide nice

research challenges when considered in relation to our NPI-based heuristic method.

Interesting topics include uncertainty in observations and multi-attribute rankings

and utilities.

In addition to applications to a wider variety of problems, there are also inter-

esting open questions, however, that could be addressed in future research. For

example, one could attempt to design a (heuristic) solution to this problem such

that the overall best candidate has (almost) the same probability of being accepted

no matter at which stage j of the process he is considered. Deriving analytic solu-

tions for such problems is difficult due to the obvious complexity in deriving such

probabilities.
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