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Abstract

Nonparametric Predictive Inference (NPI) is a frequentist statistical method

based on only fewer assumptions, which has been developed for and applied to,

several areas in statistics, reliability and finance. In this thesis, we introduce NPI

for option pricing in discrete time models. NPI option pricing is applied to vanilla

options and some types of exotic options.

We first set up the NPI method for the European option pricing based on the

binomial tree model. Rather than using the risk-neutral probability, we apply NPI to

get the imprecise probabilities of underlying asset price movements, reflecting more

uncertainty than the classic models with the constant probability while learning

from data. As we assign imprecise probabilities to the option pricing procedure,

surely, we get an interval expected option price with the upper and lower expected

option prices as the boundaries, and we named the boundaries the minimum selling

price and the maximum buying price. The put-call parity property of the classic

model is also proved to be followed by the NPI boundary option prices. To study its

performance, we price the same European options utilizing both the NPI method

and the Cox, Ross, and Rubinstein binomial tree model (CRR) and compare the

results in two different scenarios, first where the CRR assumptions are right, and

second where the CRR model assumptions deviate from the real market. It turns

out that our NPI method, as expected, cannot perform better than the CRR in



the first scenario with small size historical data, but as enlarging the history data

size, the NPI method’s performance gets better. For the second scenario, the NPI

method performs better than the CRR model.

The American option pricing procedure is also presented from an imprecise sta-

tistical aspect. We propose a novel method based on the binomial tree. We prove

through this method that it may be optimal for an American call option without

dividends to be exercised early, and some influences of the stopping time toward

option price prediction are investigated in some simulation examples. The condi-

tions of the early exercise for both American call and put options are derived. The

performance study of the NPI pricing method for American options is evaluated via

simulation in the same two scenarios as the European options. Through the per-

formance study, we conclude that the investor using the NPI method behaves more

wisely in the second scenario than the investor using the CRR model, and faces to

more profit and less loss than what it does in the first scenario.

The NPI method can be applied to exotic options if the option payoffs are a

monotone function of the number of upward movements in the binomial tree, like

the digital option and the barrier option discussed in this thesis. Otherwise, either we

can manipulate the binomial tree in order to assign the upper and lower probabilities,

for instance, the look-back option with the float strike price, or a new probability

mass is needed to be assigned to the payoff binomial tree according to the option

definition which is attractive and challenging for future study.
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Chapter 1

Introduction

The Binomial Tree Model (BTM) is a simple but efficient and easy to understand

model which is widely implemented in option pricing [18]. In this thesis, we apply

Nonparametric Predictive Inference (NPI) to the vanilla option pricing procedure

based on BTM, named as the NPI method for European option pricing and the NPI

method for the American option pricing. For the European option pricing method,

we compare the expected payoffs and prices between the classic BTM model (CRR),

presented by Cox, Ross and Rubinstein [30], and our method. Also, we calculate

the expected profit and loss of the investor using our method when he trades with

the only other investor in the market, predicting with the CRR model to assess our

method’s performance. The trade between two investors are settled in two extremes

scenarios: in Scenario 1, the CRR model is making the prediction match the real

market trend, while in Scenario 2, the CRR model predicts the market with the

wrong assumptions. The American option is the option that can be exercised before

its maturity. For the American option, because of its early exercise feature, the

NPI method performance is evaluated by simulation. Same as in the NPI method

for European option pricing, this performance study is also done in two extreme

scenarios and displays the outcome with the profit and loss of the NPI person. Both

European and American performance studies show that if there is a substantial

wrong assumption in the CRR prediction, the NPI method performs better than

1
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the CRR model.

In addition to the vanilla option pricing application, the NPI method can also

be applied to the exotic option pricing procedure. In this thesis, we also present

the NPI pricing method for three types of exotic options, the digital option, the

barrier option, and the look-back option, which are explained in Chapter 4. Among

them, some can use the boundary probabilities to compute the maximum buying

and the minimum selling price directly, whereas others either need to manipulate the

binomial tree to apply the interval probabilities or change the imprecise probability

mass assignment according to the option definition.

This chapter contains the following parts: In Section 1.1, we introduce the con-

cepts of options; in Section 1.2, the binomial tree model is illustrated with some

important definitions and properties; in Section 1.3, we discuss the estimation ways

of discount rate; in Section 1.4, we introduce the fundamental concepts of the im-

precise probability; in Section 1.5, the NPI method, especially NPI for Bernoulli

random quantities is laid out; and in Section 1.6, we display the outline of this

thesis.

1.1 Options

Options are financial products in the derivative market, which can be dated

back to the 16th century in Amsterdam [36] and then became popular in London in

17th century [63]. The option was formally introduced with standard trading rules

when the Chicago Board of Options Exchange (CBOE) was formed [34]. It gives

the option holder the right but not the obligation to buy or sell the underlying asset

at a predetermined price, the strike price K, and the option seller the obligation to

sell or buy the underlying asset at K when this option is exercised. If the option

buyer has the right to buy the underlying asset at the exercise time at a price of

K, this option contract is called the call option. Or if the option buyer has the

right to sell the underlying asset when he exercises it, this option contract is the put
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option. An option is described as ”in the money” when its exercise gives the option

holder profit, while an option is ”out of the money” if its exercise produces a loss to

the option holder. When the strike price is equal to the underlying asset price, the

option is described as ”at the money”. The character described above, which is the

option strike price and underlying asset price comparison is called ”the moneyness”

[13].

In the option category, there are two most straightforward types of options, the

European option and the American option, which are named as vanilla options. The

European option only allows the option holder to exercise the option at maturity.

Then the expected option value at t (t ≤ T ) of the European option is equal to

the discounted expectation of the payoff at maturity. B(t, T ) denotes the discount

factor from t to maturity. The expected value of V of the European call option can

be described below.

V (S, t) = E[B(t, T )(ST −Kc)
+] (1.1)

where S is the underlying asset price at time t, ST is the underlying asset price at

maturity, and Kc is the strike price of the European call option. Correspondingly,

the expected value V of the European put option expected value at time t is,

V (S, t) = E[B(t, T )(Kp − ST )
+] (1.2)

where Kp is the strike price of the European put option. Therefore, the expected

value of the put option also equals the discounted expectation of the payoff at

maturity.

The American option allows its holder to exercise anytime during the option life

period. The American option is generally more valuable than the European option

because of its leeway [13]. Due to the early exercise feature of the American option,

there is no closed form option pricing formula for American options. Then the value

of the American option (without any dividend) V (S, t) at time t, with stock price



1.1. Options 4

St = S, is different from that of the European options. In terms of the American

option, there is the stopping time τ , when the option is exercised, which for each

possible path, the American option is exercised at the optimized stopping time τ

giving us the optimization of this American option payoff. Here is the definition

of the American option. Let V (S, t) denotes the expected value of the American

option, and it equals to the expected payoff discounted from the exercise time τ

with the stock exercise price Sτ . For an American call option, the expected value is

given by,

V (S, t) = max
τ

E
[
B(t, τ)(Sτ −Kc)

+
∣∣St = S] (1.3)

where B(t, τ) is the discount factor from t to τ . This formula defines the value of

this call option at the time t, as being equal to the discounted instant payoff of this

call option at the stopping time τ . For an American put option, the expected value

is described as,

V (S, t) = max
τ

E
[
B(t, τ)(Kp − Sτ )

+
∣∣St = S] (1.4)

Therefore, the value of this put option at time t is equal to the discounted maximum

payoff at τ . Other than vanilla options, there also exist exotic options with more

complicated settings, for instance, the digital option, the barrier option, the look-

back option and so on.

In the finance literature, the most prevalent two methods are the Binomial Trees

Option Pricing Model (CRR), presented by Cox, Ross and Rubinstein [30] and the

Black-Scholes Model [12]. Both methods assume that investors know the underlying

asset from every perspective, for instance, for both the CRR model and the Black-

Scholes model are set up in a risk-neutral world. Besides, for these models, the

market is complete without any arbitrage opportunity. The Black-Scholes Model is

not practical in a valuation of early exercised options, like American option, for it

tends to exhibit systematic empirical biases related to the exercise price, the time
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to maturity and the variance when it is used in pricing the American option [38].

As a continuous time model, the Black-Scholes model is not considered in this the-

sis, because the option pricing method in this thesis is set up in the discrete time

environment. All these assumptions are unlikely to be satisfied in the real world.

Many papers are challenging those unrealistic assumptions and presenting new op-

tion pricing models. For example, Jackwerth and Rubinstein used a nonparametric

method to deduce the option probabilities from option prices by using the quadratic

minimization criterion [46]. GMPOP, short for generalized multi-period option pric-

ing model, is a binomial tree model with subjective probability in the real world to

price options, but this subjective probability is still constant [4]. While the NPI

method provides an interval probability for each step, updating with the observed

information. From this perspective, undoubtedly, implementing the NPI method

in the option pricing procedure is reasonable, for in reality, the situations change

all the time. In this thesis, we propose a novel approach to price the discrete time

option using the NPI method. The NPI method is a frequentist statistical method

inference based on historical data, which is under fewer assumptions of the market

completeness and underlying asset and contains more uncertainty from the interval

probability updating in every time step.

Some of the existing option pricing models are performed based on the Bayesian

paradigm. Boyle and Ananthanarayanan [16] proposed an estimation method of

the variance in the option pricing model with the Bayesian approach. Bauwens and

Lubrano [9] conduct the Bayesian inference in the GARCH option pricing model

to bring in the risk-neutral measurement. Jacquier and Jarrow [47] introduced the

Bayesian inference to the Black-Scholes model to reduce the model error. Polson

and Stroud [64] use the Bayesian simulation method to set up the stochastic volatil-

ity models. Martin et al. [55] defined an option price using the Bayesian approach

that allows the time-varying volatility and non-normality in the conditional distri-

bution. However, the Bayesian method has its drawbacks that it generates biased
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S0

V

S0d

Vd

1-q
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Figure 1.1: Stock and option prices in a general one-step tree

estimators of market option prices, while the NPI method gets all information from

the historical data without bias.

1.2 Binomial Tree Model (BTM)

Since our option pricing method is based on the CRR binomial tree option pricing

model together with the NPI method, in this section, the CRR binomial tree is

introduced. The CRR mode is a discrete model which has been proved it converges

to the Black-Scholes formula when time increments approach to zero [30]. Due to

the flexibility and the ease of computation in the CRR model, it can be used to

price the European option as well as the American option.

The binomial tree model was designed as a time-discrete pricing model dividing

the life of option into a large number of small time intervals of length ∆t [45].

It assumes there are only two possible prices for the underlying asset paying no

dividend on the next time step. From the initial price S0, the price either goes up

to S0u or goes down to S0d, where u and d are the up and down movement factors

respectively. This approach is depicted in Figure 1.1. Generally, u > 1 and d < 1,

and the probability in the real world of the underlying asset up movement is denoted

by p, while the real probability of the underlying asset down movement is indicated

by 1 − p. Then the expected stock price at the next time step can be calculated

by S0(1 + r)−∆t = pS0u + (1 − p)S0d, where r is the expected return of the stock.
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However, in the CRR binomial model, the valuation is under the assumption that

the world is risk-neutral and complete, which means:

• Options are calculated based upon an absence of arbitrage profit.

• All investors in the market are risk-neutral, i.e., investors are regardless of risk

preferences assigning the same value to the same options.

• Markets are frictionless, i.e., there is no transaction cost or other fees in the

markets.

Therefore, the real probability of the underlying asset p barely plays a role in this

model, whereas option prices are valued by the risk-neutral probability measure q for

an upward movement, and 1− q for a downward movement. Moreover, the binomial

tree model is irrelevant of the underlying asset’s expected return, the reason is that

options in a risk-neutral world have the same prices as in our real world, the risk-

averse world, but with the risk-free rate as the expected return. It is reasonable that

all risk-neutral measures change the real probability p to the risk-neutral probability

q, for in the risk neutral world, the expected return of all financial product is risk-

free rate, no matter it is a stock or a derivative upon an underlying asset, like the

option. So it can effectively avoid difficulties from the expected return estimation

of derivatives, as the expected return of a derivative is higher than the underlying

asset and hard to be estimated [45]. Since the derivative is priced based on the value

of the underlying asset, it has a higher leverage leading to a riskier position than its

underlying assets. However, its risk premium is hard to be assessed because of the

illiquidity of the derivatives market, causing a problem of discount rate estimation

discussed in Section 1.3.

As the binomial tree is settled according to the risk-neutral valuation, option

prices can be valued by the following procedure:

1. Compute the risk-neutral probability q, based upon the risk-free rate rf which

assumed to be constant during the option life. And the risk-neutral probability
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calculation formula is gain by the following underlying expected equations:

S0(1 + rf )
−∆t = qS0u+ (1− q)S0d (1.5)

or

(1 + rf )
−∆t = qu+ (1− q)d (1.6)

Then

q =
(1 + rf )

−∆t − d

u− d
(1.7)

2. Value expected option payoffs and get option prices by discounting the payoffs

at the risk-free rate. The detailed calculation procedure is displayed as below:

V CRR = (1 + rf )
−∆t[qV CRR

u + (1− q)V CRR
d ] (1.8)

where V CRR is the option price at time t, and V CRR
u and V CRR

d are option

values of up movement and down movement at time t + ∆t, respectively,

regardless of option types, i.e. for call option, V CRR
u = max{S0u − K, 0},

while for put option, V CRR
u = max{K − S0u, 0}, where K is the strike price.

What we have discussed above is only a one-time step valuation procedure,

and as we add more steps to the binomial tree, the risk-neutral valuation

principle continues to be held. Since option prices are always identical to

risk-neutral payoffs discounted at the risk-free rate, after all of the iterative

processes through the whole option life, we can get the ultimate result which

is the option price we wish to derive. There are closed formulae of European

options, for a call option with maturity T = m, the strike price Kc based on

an underlying asset with an initial price S0 and movement factors u and d [30].

V CRR
c [Sm−Kc]

+ = (1+rf )
−T

m∑
k=⌈k∗c ⌉

[ukdm−kS0−Kc]

(
m

k

)
qk(1−q)(m−k) (1.9)
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where k∗
c is such that uk∗cdm−k∗cS0 − Kc = 0, and ⌈k∗

c⌉ denotes the smallest

integer greater than or equal to k∗
c . T is the maturity time. For a put option,

the expected price from the CRR model is given by [30],

V CRR
p [Kp−Sm]

+ = (1+ rf )
−T

⌊k∗p⌋∑
k=0

[Kp−ukdm−kS0]

(
m

k

)
qk(1− q)(m−k) (1.10)

k∗
p is such that Kp−uk∗pdm−k∗pS0 = 0 and where ⌊k∗

p⌋ denotes the largest integer

less than or equal to k∗
p.

Compared to the celebrated Black-Scholes Model, the binomial tree is simpler

and easier to use. It is also more versatile, for it can value varies types of options that

can be exercised before maturity, like American option. In the limit, when the time

intervals are squeezed and approach to zero, the binomial tree leads to the lognormal

assumption for stock prices and underlies the Black-Scholes model [30]. Since the

CRR model converges weakly to the geometric Brownian motion, Jarrow and Rudd

[49] presented a binomial tree model matching the first two moments of the tree.

Tian [71] introduced a new model matching the first three moments of the tree and

the underlying geometric Brownian motion. Kim et al. [53] generalized all three

model and set up a tree model fitting all moments to the approximated geometric

Brownian motion. Tian [72] also developed a flexible binomial tree model with a

”tilt” parameter to enhance the accuracy of the binomial tree prediction. Ji and

Brorsen [50] developed a relaxed binomial tree model accounting for the skewness of

the underlying distribution to relax the assumption of lognormality. The binomial

tree model is widely used and developed as a result of its understandability and

intuition. Jump diffusion has been added to the binomial tree that helps price the

American option [65], the Asian option [52] and the look-back option[51]. Gerbessi-

otis [37] presented a latency- tolerant parallel algorithm to price the vanilla option

for the multiplicative binomial tree model, which achieves theoretical speedup.
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1.3 Discount rate

Originally, the discount rate is from the debt process. When a debtor is permitted

to delay the payment to a creditor, there will be a charge for the debtor, which is

the difference between the original amount of owed money and the amount of money

needed to be paid in the future for the same unit, with the discount rate is the yield

of it. For instance, a debtor A loan money lt at time t, and admits to repay the

money along with the extra compensation totally as lT = lt + ε at time T . lT is

equal to the lt times its yield rate function according to two interest calculation,

single interest or compound interest. Then the yield of this transaction, as well as

the discount rate, is r =
(

lT
lt

) 1
T−t − 1 for the single interest situation or r =

ln
(

lT
lt

)
(T−t)

for the compound interest situation. Concerning financial investment, the discount

rate is the yield rate that an investor expects to gain during the holding period,

namely that it is the expected return of the investment piece. Prices of assets are

highly upon their risk levels. For example, there are two financial products, W and

H, that they have the same value at maturity, WT = HT but H is riskier than W .

So an investor who is willing to buy these two products would ask a higher return

of H because it is more precarious, rW < rH . The asset’s value at the initial time is

equal to the discounted expected value of the asset with the expected return as the

discount rate, W0 = (1 + rW )−TWT and H0 = (1 + rH)
−THT . After the discount,

the price of H is lower than the price of W . This is what ”high risk, high reward”

means.

As acknowledged, in the CRR binomial tree this discount rate is the risk-free

rate, because the CRR binomial tree is settled based on the risk-neutral valuation.

The reason why the risk-neutral valuation is utilized is that in a risk-neutral world all

products are riskless, and all individuals are indifferent to risk, where their expected

returns for all products are the risk-free rate. Whereas, in a risky world, different

investors have different risk levels they can tolerate, so every investment needs to be

adjusted according to investors’ risk aversion, which is time-consuming and difficult
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to estimate precisely. Thus, the risk-neutral valuation is commonly used because of

its simplicity and efficiency.

Suppose an investor would like to invest an asset in the risk-neutral world because

in this world there is no risk at all, then this investor would expect to gain a profit

at the risk-free rate. If the same investor invests the same asset in a risk world,

because of the uncertainty, this investor would like to ask more profit during this

holding period, so the expected return would be higher than the risk-free rate. As

mentioned earlier, the discount rate is the yield rate during the holding period, so

in the risk-neutral world, the discount rate is risk-free rate while in the risk world

it is equal to the asset return, which for a risk asset its discount rate is higher than

the risk-free rate.

The example of two financial products, W and H are the underlying assets (not

derivatives), when it comes to derivatives things become complex in the risk world.

As in the risk world, derivatives involving options are much riskier than underlying

assets, resulting in investors have a higher expectation of profit. In the risk-neutral

world option prices are derived by Equation(1.8). But in the risk world, suppose the

stock up movement probability is a constant value p > q, then the option prices are

calculated by the equation Vc[ST−Kc]
+ = (1+r)−T

∑T
k=⌈k∗c ⌉

[ukdT−kS0−Kc]
(
T
k

)
pk(1−

p)(T−k), with Vc[ST −Kc]
+ = V CRR

c [ST −Kc]
+, meaning r > rf . Besides, the same

option is going to have the same price using these two formulae [45], which means

the discounted procedure eliminated the effects of risk on the same product. And

the discount rate in this world is

r = rf + rpr (1.11)

where rpr is the yield of the risk premium referring to the financial product risk.

When it relates to the underlying assets’ discount rate, it equals the risk-free rate

plus the risk premium of this asset in this market. However, it is hard to estimate

the time discount rate for options, because the risk premium parameter of options is
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higher than that of stock, and it is not easy to judge the fair risk premium according

to the information available from the market [45].

Although it is complicated to get the discount rate in the real world, there is no

reason for us to overlook it or weaken it. As the discount rate is typically defined

as ’the equilibrium expected rate of return on securities equivalent in risk to the

project being value’ [59], we could use the expected rate of return as the discount

rate. According to option pricing analysis, there are two solutions to estimate the

discount rate in the empirical market. The first one is using the expected return of

the underlying asset as the discount rate. However, as its corresponding derivative

has a higher risk, when there exist better solutions, this estimation method is less

appropriate. Another way is that under the assumption of the completed market,

seeking for a portfolio of securities that can perfectly replicate the payoff of the

derivatives is always achievable, then the expected return of this portfolio is identical

to the expected return of the derivative. Since the NPI method for option pricing

is in the theoretical study, finding a replicated portfolio of securities is not feasible.

Thus, we use the first strategy to estimate the discount rate for American options,

and the discount rate is equal to the non-negative expected return of the underlying

asset.

1.4 Imprecise probability

As the NPI method is a frequentist method based on imprecise probability the-

ory, in this section, the idea and property of the imprecise probability theory are

presented.

For a non-empty space (Ω,A), where Ω is a sample space and A is a set of events.

For an event A ∈ A, in precise probability theory, there is a specific probability,

p(A) ∈ [0, 1], with this probability p satisfying Kolmogorov’s axioms [6]. Due to the

lack of information gained from the real world for the event A, the precise probabil-

ity misses estimating uncertainties in the real world so that it can not give a good
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result of the prediction of event A. Imprecise probability offers an alternative way to

investigate event A, and the imprecise probability is an umbrella term comprised of

all related quantitative uncertainty measurement providing multiple-valued proba-

bilities, e.g., interval probabilities, as the outcomes [22]. Imprecise probabilities are

becoming more and more popular nowadays, making it widely applied in different

backgrounds, like artificial intelligence, engineering, chemistry, and biology [1].

The idea of using the imprecise probabilities is dated back at least to the middle

of the nineteenth century [14]. The main idea of imprecise probabilities is that

instead of using a certain probability to describe the uncertainty of the event A that

is the path with the non-negative payoff in the binomial tree, we assign an interval

probability, [P (A), P (A)], to event A, where 0 ≤ P (A) ≤ P (A) ≤ 1 . Imprecise

probability extends the classic precise theory of probability, and here the classic

probability becomes a special case, if P (A) = P (A) is true, and it is identical to

say that we have all information about event A in order to let us value the explicit

probability of this event. Apart from this case, there exists another special case,

P (A) − P (A) = 1, where P (A) = 1 and P (A) = 0, which means we have no

information about event A. Weichselberger [74] defined a structure M:

M = {p : P (A) ≤ p(A) ≤ P (A),∀A ∈ A}

where p is a probability function on A in classical probability theory. According

to the expression of imprecise probabilities stated by Augustin and Coolen [5], the

imprecise probability can be expressed as optimal bounds for a set of probabilities

of event A ∈ A,

P (A) = inf
p∈P

p(A)

P (A) = sup
p∈P

p(A)

where 0 ≤ P (A) ≤ P (A) ≤ 1. Furthermore, the lower and upper probabilities hold

a conjugacy property which links these two probabilities, P (A) = 1− P (Ac), where

Ac is the complementing event of A. The lower and upper boundary probabilities
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have several interpretations, in general, P (A) reflects the information in support of

A where P (A) reflects the information not supporting Ac [5].

Imprecise probability generalizes probability theory, for the circumstances that

information is too limited to conclude a precise probability for an event of inter-

est. So imprecise probability reflects more uncertainty about the event. Imprecise

probabilities have been introduced to describe financial markets and to solve finan-

cial problems. For example, Berleant et al. [11] provide criteria and a measure

for portfolio selection problems by utilizing the concept of imprecise probabilities.

Imprecise probabilities also help with decision making in case of imprecise risk [48].

Muzzioli and Reynaerts [58] proposed a model to price American options with im-

precise probabilities, where they introduced the fuzzy theory to the option pricing.

The fussy set theory provides multiple outcomes of the underlying asset movements

given an imprecise expected option value. Based on the successful application of

imprecise probability theory, it is evident to believe that the implementation of the

NPI method is also applicable.

1.5 Nonparametric Predictive Inference (NPI)

Coolen [21] introduced a statistical methodology called ’Nonparametric Predic-

tive Inference’ (NPI), to calculate the lower and upper probabilities for Bernoulli

random quantities. It is on the basis of imprecise probability with frequentist statis-

tical framework and strong consistency properties [5]. NPI is an inferential frame-

work based on the assumption A(n) presented by Hill [41], which directly provides

probabilities for events involving future observations by using few model assump-

tions and observed values of relevant random quantities without prior knowledge.

Suppose that there exists a sequence of real-valued and exchangeable random quan-

tities, X1, ..., Xn, Xn+1. Assume that X1, ..., Xn be ordered and their realizations

denoted as x(1) < ... < x(n) and let x(0) = −∞ and x(n+1) = ∞ for ease of notation.

We assume there is no tie between any of them, if not, the results can be generalized
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to allow ties [56]. These ordered observed data partition the real line into n + 1

open intervals Ij = (x(j−1), x(j)) , where j = 1, 2, ..., n + 1. For the first predictive

observation Xn+1 on the basis of n observed values, A(n) [41] is

P (Xn+1 ∈ (x(j−1), x(j))) =
1

n+1
for j = 1, 2, ..., n+ 1

So the probability for the event that the next observation falls in the interval

Ij = (x(j−1), x(j)) is 1
n+1

, for each interval Ij. As what Hill discussed [42], A(n) does

not assume any knowledge of the distribution of random quantities of interest. By

introducing imprecise probability theory, A(n) provides optimal bounds for the prob-

ability of any event of interest involving Xn+1, namely lower and upper probabilities

in imprecise probability theory [73] and interval probability theory [75], following

from De Finetti’s fundamental theorem of probability [31].

The NPI method, a data-based imprecise probability method has been developed

for a range of problems in operational research, including queueing [27], replacement

problems [28], and many applications in reliability [24] and statistics [21, 25]. NPI

has been applied to finance prediction, providing a relatively straightforward way

to study future stock return when little further information is available providing

an interval probability of the stock return greater than the target return and also a

way of the pairwise comparison between stock returns [8]. The NPI method can also

be implemented in credit rate for banking based on ROC analysis, which is under

few assumptions and uses the imprecise probabilities to qualify the uncertainty [26].

Owing to the attractive properties of the NPI method [23], with fewer assumption

in the method but embrace more uncertainty by using the imprecise probabilities,

its implementation in option pricing is appealing. Unlike the CRR model, where

the probability of stock movement is constant and precise, the probabilities from

the NPI method are in the form of an interval with lower and upper bounds, gained

through studying the observed data within a frequentist statistics framework, which

makes it an appealing forecasting method [23]. Another exceptional property of

NPI is that it keeps learning from data. When predicting non-independent multiple
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Figure 1.2: The binomial tree based on the NPI method

future observations, NPI considers all the predicted observations as observed data

and uses the new imprecise probabilities determined from the predicted data and

historical data to forecast the next future observation [21]. Thanks to utilizing

imprecise probabilities from NPI method, outcomes of the predictions exhibit more

uncertainty of the market than those of the CRR model.

As in the Binomial tree model, the underlying asset price is assumed to be a

Bernoulli random quantities. The NPI method has been developed for Bernoulli

data [21], which is used in this thesis for option pricing. Regarding the option

pricing, there are two possible outcomes, the underlying asset price going up or down.

Let (n, s) represent s increasing underlying asset prices in n historical underlying

asset prices. Let Y (m) represent the number of increasing underlying asset prices

in m future underlying asset prices. Here n and m underlying asset prices are

exchangeable. Denote Zt = {z1, .., zt}, where 1 ≤ t ≤ m and 0 ≤ z1 < z2 < ... <

zt ≤ m, and for the ease of notation, specify
(
s+z0
s

)
= 0. Thus, the upper probability
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of the event Y (m) ∈ Zt based on the information (n, s), for s ∈ {0, ..., n} [21], is

P (Y (m) ∈ Zt|(n, s)) =
(
n+m

n

)−1 t∑
j=1

[(
s+ zj

s

)
−
(
s+ zj−1

s

)](
n− s+m− zj

n− s

)
(1.12)

We can also deduce the comparative NPI lower probability by the conjugacy prop-

erty P (A) = 1− P (Ac), where Ac is the complementary event to A,

P (Y (m) ∈ Zt|(n, s)) = 1− P (Y (m) ∈ Zc
t |(n, s)) (1.13)

where Zc
t = {0, 1, ...,m} \ Zt. On the basis of the NPI method, we can structure

a binomial tree for a underlying asset with the price Si
t , t ∈ {0, . . . ,m} and i ∈

{1, . . . , t + 1}, as drawn in Figure 1.2. Based on Equation (1.12), for a one step

binomial tree, the upper probability for the event Y (m) = 1, given data (n, s), for

s ∈ {0, ..., n}, is [21]

P (Y (1) = 1|(n, s)) = s+ 1

n+ 1
(1.14)

The lower probability can be deduced by the conjugacy property,

P (Y (1) = 1|(n, s)) = s

n+ 1
(1.15)

The general formulae for any one time step in the binomial tree are also written

below.

P (Y (t+ 1) = 1|(n+ t, s+ t− i+ 1)) =
s+ t− i+ 1

n+ t+ 1
(1.16)

P (Y (t+ 1) = 1|(n+ t, s+ t− i+ 1)) =
s+ t− i+ 2

n+ t+ 1
(1.17)

According to Coolen’s [21], the derivation of NPI lower and upper probabilities

for a m step option can be calculated by counting arguments directly. In this method,

we predict m future observations given n observed values under the assumption

of A(n), and a latent variable representation constituted of Bernoulli quantities is

represented by all observations on the real line with a threshold between successes
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Figure 1.3: Paths counting of Bernoulli Quantities

and failures [1]. Among two types of observations, n observed data with s successes

and m future data containing k successes, there exist
(
n+m
m

)
different orderings of

observations, which are equally likely. Alternatively, we can think in a way using the

lattice from (0, 0) to (n,m), like what is shown in Figure 1.3, with movements either

go right or upward, and the lower and upper probabilities are given by counting

the paths. Specifically, the lower NPI probability P (Y (m) ∈ Zt) is obtained by

counting the number of all paths go only through the point (s, k) with k ∈ Zt. And

the upper NPI probability P (Y (m) ∈ Zt) is given by counting the number of all

paths go through the point (s, k) with k ∈ Zt, including paths which might also go

through the point (s, l) with l ∈ Zc
t

The NPI lower and upper probabilities for events that are of interest in this thesis

and the formulae are as follows [1]. The upper probability of the event {Y (m) =

k|(n, s)}, given when all paths go through the point (s, k) are counted. There are(
s+k
k

)(
n−s+m−k

m−k

)
paths go through the point (s, k), so the formula is described as

P (Y (m) = k|(n, s)) =
(
n+m

m

)−1(
s+ k

k

)(
n− s+m− k

m− k

)
(1.18)
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While the lower probability of the event {Y (m) = k|(n, s)} is

P (Y (m) = k|(n, s)) =
(
n+m

m

)−1(
s+ k − 1

k

)(
n− s+m− k − 1

m− k

)
(1.19)

which is based on the number of all the paths go through both the point (s− 1, k)

and the point (s+1, k) that is
(
s+k−1

k

)(
n−s+m−k−1

m−k

)
. Formulas for special cases, k = 0

and k = m are discussed below:

P (Y (m) = m|(n, s)) =
(
s+m− 1

m

)(
n+m

m

)−1

(1.20)

P (Y (m) = m|(n, s)) =
(
s+m

m

)(
n+m

m

)−1

(1.21)

P (Y (m) = 0|(n, s)) =
(
n− s+m− 1

m

)(
n+m

m

)−1

(1.22)

P (Y (m) = 0|(n, s)) =
(
n− s+m

m

)(
n+m

m

)−1

(1.23)

By using path counting method, we discover the probability relationships be-

tween the events {Y (m) ≥ k∗|(n, s)} and {Y (m) ≥ k∗+1|(n, s)} for k∗ ∈ {0, 1, ...,m−

1}, as well as the relationship between the event {Y (m) ≤ k∗∗|(n, s)} and {Y (m) ≤

k∗∗ + 1|(n, s)} where k∗∗ ∈ {1, ...,m}, according to their lower and upper probabili-

ties, respectively [21].

P (Y (m) ≥ k∗|(n, s))− P (Y (m) ≥ k∗ + 1|(n, s))

=

(
n+m

m

)−1(
s+ k∗ − 1

k∗

)(
n− s+m− k∗

m− k∗

) (1.24)

P (Y (m) ≥ k∗|(n, s))− P (Y (m) ≥ k∗ + 1|(n, s))

=

(
n+m

m

)−1(
s+ k∗

k∗

)(
n− s+m− k∗ − 1

m− k∗

) (1.25)

P (Y (m) ≤ k∗∗|(n, s))− P (Y (m) ≤ k∗∗ + 1|(n, s))

=

(
n+m

m

)−1(
s+ k∗∗

k∗∗

)(
n− s+m− k∗∗ − 1

m− k∗∗

) (1.26)



1.5. Nonparametric Predictive Inference (NPI) 20

P (Y (m) ≤ k∗∗|(n, s))− P (Y (m) ≤ k∗∗ + 1|(n, s))

=

(
n+m

m

)−1(
s+ k∗∗ − 1

k∗∗

)(
n− s+m− k∗∗

m− k∗∗

) (1.27)

These equations are derived by counting the movements for the right-upward

paths from (0, 0) to (n,m). Equation (1.24), for instance, can be attained by count-

ing all the paths go through the point (s, k∗) and points above other than (s, y)

for y < k∗, identical to all the paths via both two specific points, (s − 1, k∗) and

(s, k∗). We can get the lower and upper probabilities of events {Y (m) ≤ k∗|(n, s)}

and {Y (m) ≥ k∗∗|(n, s)} for k∗ ∈ {0, 1, ...,m − 1} and k∗∗ ∈ {1, ...,m}. Detailed

derivation is shown as following:

P (Y (m) ≥ k∗|(n, s)) =
(
n+m

m

)−1 m∑
k=k∗

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(1.28)

P (Y (m) ≥ k∗|(n, s)) =
(
n+m

m

)−1 m∑
k=k∗

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(1.29)

P (Y (m) ≤ k∗∗|(n, s)) =
(
n+m

m

)−1 k∗∗∑
k=0

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(1.30)

P (Y (m) ≤ k∗∗|(n, s)) =
(
n+m

m

)−1 k∗∗∑
k=0

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(1.31)

As we discussed, the NPI method for Bernoulli data [21] provides a set P of

classical, precise, probability distributions for which the presented lower and upper

probabilities are optimal bounds. In imprecise probability theory, this set P is called

a structure. So for any event Y (m) ∈ Zt

P (Y (m) ∈ Zt) = inf
p∈P

p(Y (m) ∈ Zt) (1.32)

P (Y (m) ∈ Zt) = sup
p∈P

p(Y (m) ∈ Zt) (1.33)

Similarly, lower and upper expected values for a real-valued function g of Y (m) can

be derived. In the option pricing method, this real-valued function equation is equal
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to the positive payoffs according to the options’ definitions.

E(g(Y (m))) = inf
p∈P

Ep(g(Y (m))) (1.34)

E(g(Y (m))) = sup
p∈P

Ep(g(Y (m))) (1.35)

where Ep(g(Y (m))) is the expected value or payoff based on the probability function

p. On behalf of option trading positions, E(g(Y (m))) denotes the maximum payoffs

an investor would be willing to pay and E(g(Y (m))) denotes the minimum payoffs

an investor would be willing to sell.

We combine the NPI method with the binomial tree option pricing model, getting

a novel option pricing method learning from the historical data and concerning more

uncertainty by introducing an interval probability instead of a constant probability

to the binomial tree.

1.6 Outline

In this thesis, we present the NPI method for various types of options, both

vanilla and exotic options based on the BTM. The thesis is organized as follows. In

Chapter 2, Nonparametric Predictive Inference for European option pricing based

on the Binomial Tree Model is proposed. The whole method is set up and studied

examples comparing with the CRR model in order to assess its performance. In

this chapter, we also discuss the put-call parity from the NPI method perspective.

In Chapter 3, we introduce the NPI option pricing method based on the binomial

tree model for American options. Some examples of early exercise call options based

on the NPI method are investigated to manifest that the rational trading theory:

’Never early exercise an American call option without dividends’ is not valid in our

method. We also do the simulation of the trade between two investors, one using the

NPI method and the other using the CRR model, to study the performance of our

method. In Chapter 4, the NPI pricing methods for exotic options are introduced.
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The NPI option pricing methods for the digital option and the barrier option are set

up based on the underlying asset price binomial tree according to their option defi-

nition. The NPI option pricing method for the look-back option with a float strike

price is based on a new binomial tree manipulated to be monotonic according to its

definition. The NPI option pricing method raises interesting questions for future

research, some brief comments and general conclusions are included in Chapter 5.

A paper based on the content in Chapter 2 has been published by the Jour-

nal of the Operational Research Society [40]. The content of this chapter also has

been presented at several conferences, Research Students’ Conference in Probabil-

ity and Statistics (Durham, UK, April 2017) and the 7th International Conference

of the Financial Engineering and Banking Society (Glasgow, UK, June 2017). A

paper related to Chapter 3 is ready to submit. The results of Chapter 3 has been

presented at some conferences and the seminars, Stats4grads weekly seminar in

statistics (Durham, UK, November 2017), the 17th Winter school on Mathematical

Finance (Lunteren, Netherlands, January 2018) and at the training school of Un-

certainty Treatment and Optimization (Durham, UK, July 2018). A paper in the

light of Chapter 4 is in preparation to be submitted to an academic journal.



Chapter 2

NPI for European Option Pricing

In this chapter, we present the NPI method for European option pricing based

on the binomial tree model. The European option is one of the vanilla options,

which is the most basic but popular option type in the market [45]. To start the

investigation of our novel option pricing method in Section 2.1, the NPI method is

applied to the European option pricing both without and with the discount factor.

We also discuss the put-call parity for the NPI method in Section 2.2. In Section 2.3,

we study its performance compared to the CRR model in two extreme scenarios and

also inquire into the performance of the NPI method with the discount procedure.

We conclude the content of the whole chapter and discuss further interesting topics

in Section 2.4.

2.1 NPI option pricing method

In this section, we use the NPI method for Bernoulli random quantities [21]

discussed in Section 1.5 to evaluate European option payoffs. The assumptions of

our NPI European option pricing method are as follows. The initial underlying asset

S0 has two possible outcomes at the next time step, either going up to uS0 or going

down to dS0, with u > 1, d < 1 and S0 is the initial stock price without paying any

dividends during the period considered. So far, what described above is the same

23
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Figure 2.1: Stock and option prices in one-step tree

as those in the CRR binomial trees in Section 1.2.

The NPI method is applied to the binomial trees. As reviewed in Section 1.5,

these m future stock prices are seen as Bernoulli random quantities. Unlike the

CRR binomial trees which use an explicit probability from risk-neutral valuation, we

assume that the n historical data are sufficient to analyze option prices, and among n

observed data the stock price went up s times and down n−s times. To simplify our

model, there is no effect of the discount factor at first by assuming the time of trading

is close to maturity, so the influence of any discount factor is neglectable. Excluding

the discount factor eliminates the error caused by the inappropriate estimation of

discount rate to expose the real results of the NPI method in the later performance

study. Same settings as in Section 1.5, suppose the random number of up movements

during future m time steps is Y (m). Then the stock price at time m is expressed

as:

Sm = uY (m)dm−Y (m)S0 (2.1)

Based on Equations (1.34) and (1.35), we can compute the upper and lower expec-

tations of the European option payoff, where the real-value function g is equal to

[Sm−K]+ with the strike price K for the European call option and [K−Sm]
+ for the

European put option referring to the European option defined in Section 1.1. The

binomial tree for the European option can be structured based on the NPI method

in Figure 2.1.
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Referring to Figure 2.1, V represents the option value at each node, then Vd and

Vu represent the option value for nodes with stock prices S0d and S0u, respectively.

The interval probability from the NPI method is written as [p, p] for the upward

movement and [1− p, 1− p] for the downward movement. For each type of option,

only paths with positive payoffs are taken into account because an option is a right

for the buyer, and the buyer would like to exercise the option if the payoff is positive.

For call options, only paths which have payoff Sm −Kc greater than zero, are taken

into account, where Sm is the stock price at maturity and Kc is the strike price,

then,

Sm −Kc = uY (m)dm−Y (m)S0 −Kc > 0 (2.2)

Y (m) >
lnKc − lnS0 −m ln d

lnu− ln d
=: k∗

c (2.3)

The NPI lower and upper probabilities for the paths having positive payoffs in

the European call option binomial tree, all stock prices at the m step higher than

the strike price of this call option, are calculated according to the NPI method for

Bernoulli data.

P (Y (m) ≥ ⌈k∗
c⌉) =

(
n+m

m

)−1 m∑
k=⌈k∗c ⌉

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(2.4)

P (Y (m) ≥ ⌈k∗
c⌉) =

(
n+m

m

)−1 m∑
k=⌈k∗c ⌉

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(2.5)

For the put option, the paths with payoffs Kp − Sm > 0 are considered, where

Kp is the strike price. By this definition, the payoff of a put option is [Kp − Sm]
+,

then,

Kp − Sm = Kp − uY (m)dm−Y (m)S0 > 0 (2.6)

Y (m) <
lnKp − lnS0 −m ln d

lnu− ln d
=: k∗

p (2.7)

Following the same steps, as we did for call options, we find paths valued for the



2.1. NPI option pricing method 26

put option, and the interested event is Y (m) ≤ ⌊k∗
p⌋.

P (Y (m) ≤ ⌊k∗
p⌋) =

(
n+m

m

)−1 ⌊k∗p⌋∑
k=0

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(2.8)

P (Y (m) ≤ ⌊k∗
p⌋) =

(
n+m

m

)−1 ⌊k∗p⌋∑
k=0

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(2.9)

In addition to the lower and upper probabilities above we are also interested in

the lower and upper expected values, given by Equations (1.34) and (1.35), where the

real-valued function g(Y (m)) is equal to [Sm−Kc]
+ for a call option and [Kp−Sm]

+

for a put option, because Sm is a random variable depending on m. According to the

trading actions, expected boundary payoffs are renamed, E denotes the maximum

payoff an investor would buy at, and E denotes the minimum payoff an investor

would sell for. As we have already computed the lower and upper probabilities for

the call options (Equations (2.4) and (2.5)), as well as for the put options (Equa-

tions (2.8) and (2.9)), then formulae for European option expected payoffs can be

generated [40] as follows:

The minimum selling payoff of the call option

Ec[Sm −Kc]
+

=

(
n+m

m

)−1 m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc](P (Y (m) ≥ k)− P (Y (m) ≥ k + 1))

=

(
n+m

m

)−1 m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(2.10)

Here for each term with k from ⌈k∗
c⌉ to m, we assign a probability P (Y (m) ≥

k)− P (Y (m) ≥ k + 1) to ensure that we give the maximum possible probability to

the largest possible value for k, then the maximum possible remaining probability

to the second largest value for k, and so on. The corresponding minimum selling

payoff of the put option can be written as follows.
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The minimum selling payoff of the put option

Ep[Kp − Sm]
+ =

(
n+m

m

)−1 ⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0](P (Y (m) ≤ k)− P (Y (m) ≤ k − 1))

=

(
n+m

m

)−1 ⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(2.11)

For downward paths with k from 0 to ⌊k∗
p⌋, each path is assigned a probability

P (Y (m) ≤ k)−P (Y (m) ≤ k−1), which ensures that we give the maximum possible

probability to the lowest possible value for k, then the maximum possible remaining

probability to the second lowest value for k, and so on.

Using similar derivations, we can formulate the lower expected payoff for a call

option and a put option as follows.

The maximum buying payoff of the call option

Ec[Sm −Kc]
+ =

(
n+m

m

)−1 m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(2.12)

The maximum buying payoff of the put option

Ep[Kp − Sm]
+ =

(
n+m

m

)−1 ⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(2.13)

Therefore, for each type of option, there is an interval of expected payoffs with

bounds as the maximum buying payoff and the minimum selling payoff. As we

calculated, for the call and the put options we get an interval of the expected values,

which means with limited information any value in this interval is reasonable to the

NPI investor, and any value outside this interval is appealing to the NPI investor.
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When the NPI investor is offered a payoff higher than the minimum selling payoff,

it is overvalued according to NPI outcomes. Similarly, the NPI investor would see

any value less than the maximum buying payoff as undervalued, while the value in

between expected value bounds does not trigger any trading action.

In the thesis, the formulae with the discount factor are also provided to complete

the NPI method from the time value perspective. As discussed in Section 1.3, after

introducing the discount rate to the evaluation formula, we rewrite the European

option prices with maturity m. For the call option, the maximum buying price and

the minimum selling price are listed below.

The maximum buying price of the call option

Vc[Sm−Kc]
+ = (1+r)−m

(
n+m

m

)−1 m∑
k=⌈k∗c ⌉

[ukdm−kS0−Kc]

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(2.14)

The minimum selling price of the call option

Vc[Sm−Kc]
+ = (1+r)−m

(
n+m

m

)−1 m∑
k=⌈k∗c ⌉

[ukdm−kS0−Kc]

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(2.15)

These formulae are deduced by adding the discount factor (1 + r)−m, where r is

the discount rate equal to the non-negative expected return of the underlying asset

in this thesis. The function of the discount factor is to discount the time value of

the payoff. After the discount procedure, we get the expected call option price at

the initial time. By adding the same discount factor in the put option formulae, we

get the formulae of the expected put option price at time 0.



2.2. The put-call parity 29

The maximum buying price of the put option

Vp[Kp−Sm]
+ = (1+r)−m

(
n+m

m

)−1 ⌊k∗p⌋∑
k=0

[Kp−ukdm−kS0]

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(2.16)

The minimum selling price of the put option

Vp[Kp−Sm]
+ = (1+r)−m

(
n+m

m

)−1 ⌊k∗p⌋∑
k=0

[Kp−ukdm−kS0]

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(2.17)

By far, we finish setting up the NPI method for the European option pricing

and present the formulae of the boundary results, the maximum buying price and

the minimum selling price, either with or without the discount procedure.

2.2 The put-call parity

After constructing the NPI option pricing method, a popular property in the

classic option pricing model is of interest. In financial mathematics, there is a

relationship, called the put-call parity, between the price of a European call option

and a European put option, with the same exercise price and the exercise date,

namely that a portfolio containing a long call option and a short put option has the

same value as a single forward contract at the identical strike price and maturity,

and this future contract can also be constituted by an underlying asset and an

opposite position of the riskless asset. The put-call parity traces back to the 17th

century. Both de la Vega[32] and de Pinto[33] wrote statements indicating that

the put-call parity was described and understood based on its application in the

late 17th century and 18th century Amsterdam option markets. The put-call parity

is valid because if the underlying asset has a higher price than the strike price at

maturity, the call option is exercised, while if the price is below the strike price, the

put option is exercised. Thus, in either case, one unit of the asset is purchased at

the strike price, exactly as in a forward contract. Besides, no matter which option
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is exercised, the payoff of this portfolio is ST −K at time T .

The assumptions of the put-call parity need to be clarified before we study this

property in the setting of the NPI method. First of all, neither a put nor a call

option can be exercised before maturity, meaning that the type of options here is

”European”. And stock dividends are protected, which the value of dividends will

be subtracted from the stock exercise price at maturity, or the stock does not pay

any dividend during the option holding period. Also, no transaction costs or other

fees exist in the market. Last but not least, the market is risk-neutral that investors

can borrow or lend money at a risk-free rate.

The put-call parity can be expressed as

ce(t)− pe(t) = St −K ·B(t, T ), with B(t, T ) = (1 + rf )
−(T−t) (2.18)

where ce(t) and pe(t) are fair prices of a European call option and a European put

option, respectively, having the same strike price K and the underlying asset at price

St, and B(t, T ) is the time discount factor consisting of riskless rate rf . It denotes

that the cost of a European call option can be inferred from the value of a European

put option with the same strike price and exercise date and vice versa [45]. As it is

mentioned earlier, a put option, a call option, and the underlying security constitute

an interrelated securities complex, leading to a profit or loss can be yielded when

the put or call price in the deviates market substantially from the parity price [54].

To make this relationship between put and call option clearer, we illustrate this

in Table 2.1. There are four trading strategies in Table 2.1, Strategy A, B, C and

D. Strategy A tells us to buy a call option for −ce at time 0, then at maturity we

either get the payoff if ST ≥ K or nothing if ST ≤ K. Strategy B is a portfolio

containing a buying position of the stock at a price S0, a buying position of a put

option with the price −pe and a loan. So at the initial time the total cash flow of

Strategy B is −pe − S0 +K · B(t, T ), and the maturity cash flow is ST −K when

ST ≥ K or 0 when ST ≤ K. Strategy C is to buy a put option at a price −pe, and
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Strategy Cashflow at Time 0 ST ≤ K (maturity) ST ≥ K (maturity)
A Buy call −ce 0 ST −K
B Buy stock −S0 ST ST

Buy put −pe K − ST 0
Borrow K ·B(t, T ) −K −K
Total −pe − S0 +K ·B(t, T ) 0 ST −K

C Buy put −pe K − ST 0
D Sell stock S0 −ST −ST

Buy call −ce 0 ST −K
Lend −K ·B(t, T ) K K
Total S0 − ce −K ·B(t, T ) K − ST 0

Table 2.1: The relationship of European options and stock without dividend

get payoff K − ST if ST ≤ K or nothing if ST ≥ K. Strategy D is also a portfolio

with selling a stock, buying a call option and a deposit. The initial cash flow is

S0 − ce − K · B(t, T ), and the maturity cash flow is K − ST if ST ≤ K or zero if

ST ≥ K. From the table, it is evident that strategies A and B yield same cash flow

at maturity, so as strategies C and D. Therefore, it is sure that these two combined

strategies should have the same cash flow at the initial time because the market is

under the risk-neutral assumption.

If call prices are overvalued, arbitrage occurs by selling a call option and longing

a call position, taking an action of strategy C and strategy D, for a call option can

be converted into complex securities within a put option. The sure profit of M from

this action is :

ce − pe − S0 +K ·B(t, T ) = M (2.19)

The procedure is the same when it comes to an overpriced put option. By

taking a trade strategy, selling a call option and longing a put position, identical to

a combination of strategy A and strategy B, a profit N can be achieved, which can

be represented as:

pe − ce + S0 −K ·B(t, T ) = N (2.20)

And when these two situations appear in the market, the put-call parity is invalid,

and there exist arbitrage opportunities in the market. According to our method,
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this phenomenon will frequently happen when option prices fall outside the interval

prices, for investors would not like to take any action when prices are in the interval,

and this problem is detailedly discussed below.

In terms of the assumptions, there is one main difference between our method

and the classic one. On the contrary to the original environment in which the classic

put-call parity was proved, the market in which NPI option pricing model is settled

is incomplete, which means that there exist arbitrage opportunities, and the bid-ask

spread is non-zero. To avoid the influence caused by the discount procedure on the

NPI method, we do not consider the discounted factor in our payoff valuation in

NPI pricing model, so we only demonstrate the put-call parity in non-discounted

version:

Ec − Ep = ST −K (2.21)

As it is described in the put-call parity both call and put options of the portfolio

structured in the put-call parity have the same exercise value Kc = Kp = K, then

for ease of notation Equation (2.13) is rewritten to

Ep[K − Sm]
+ =

(
n+m

m

)−1 ⌈k∗⌉−1∑
k=0

[K − ukdm−kS0]

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(2.22)

where ⌈k∗⌉ is the same value as it is in the call option. Now we intend to prove

that the boundary prices from NPI follow the put-call parity by replacing Ec and Ep

with the minimum selling payoff of a call option and the maximum buying payoff of

a put option, respectively, in order to see if it can get the same result as the original

one does. The proof is given as follows.
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Ec[Sm −K]+ − Ep[K − Sm]
+

=

(
n+m

m

)−1 m∑
k=⌈k∗⌉

[ukdm−kS0 −K]

(
s+ k

k

)(
n− s+m− k − 1

m− k

)

−
(
n+m

m

)−1 ⌈k∗⌉−1∑
k=0

[K − ukdm−kS0]

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
=

(
n+m

m

)−1 m∑
k=0

[Sk −K]

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
= Sm −K (2.23)

where Sm is the upper stock price at maturity:

Sm =

(
n+m

m

)−1 m∑
k=0

Sk

(
s+ k

k

)(
n− s+m− k − 1

m− k

)

Sm is the minimum stock price a person is willing to sell for. Equation (2.23) is

identical to the non-discounted version of put-call parity, proving boundary option

prices based on NPI follows the put-call parity.

For completeness, it is necessary to investigate into the other case, which is

holding a portfolio encompassing two actions of selling a put option and buying a

call option. Then the put-call parity can be described as the version down below,

Ep − Ec = K − ST (2.24)

Doing the same steps as in the first case, Ec is taken place by the maximum

buying payoff of a call option Equation(2.12). And Ep is replaced by the formula

deduced based on Equation(2.11) valuing the minimum selling payoff of the put

option as following:

Ep[K − Sm]
+ =

(
n+m

m

)−1 ⌈k∗⌉−1∑
k=0

[K − ukdm−kS0]

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(2.25)
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Then, the alternative put-call parity can be investigated:

Ep[K − Sm]
+ − Ec[Sm −K]+

=

(
n+m

m

)−1 ⌈k∗⌉−1∑
k=0

[K − ukdm−kS0]

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
−

(
n+m

m

)−1 m∑
k=⌈k∗⌉

[ukdm−kS0 −K]

(
s+ k − 1

k

)(
n− s+m− k

m− k

)

=

(
n+m

m

)−1 m∑
k=0

[K − Sm]

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
= K − S(m) (2.26)

where S(m) =
(
n+m
m

)−1∑m
k=0 Sm

(
s+k−1

k

)(
n−s+m−k

m−k

)
and shows the maximum buying

stock price that an investor is willing to buy at.

Note that all the cases we discussed above, only boundary prices of the interval

are involved, in other words, only bounds of the price interval hold the equilibrium

like the put-call parity in classic theory. In our method, there exists bid-ask spread,

the interval between the maximum buying price and the minimum selling price,

meaning that unlike the market in which the classical model is made, in our market

there are arbitrage opportunities. Since the NPI investor is only willing to buy an

option at a lower price than the lower boundary price and sell one for a price over

the higher bound, so apart from boundary prices, all actions that are going to be

taken by investors will create an arbitrage opportunity. The arbitrage opportunities

are clearer to be demonstrated by Figure 2.2, in which strategy, buying a call option

and selling a put option. From the figure, we can see that other than bounds, the

value of a portfolio, buying a call option and selling a put option is greater than the

portfolio K ·B(t, T )− S(0). When ce < ce, pe > pe, then pe − ce ≥ K ·B(t, T )S(0),

where ce and pe in this case is the prices of the action options. An investor can

gain a certain profit N , by taking action as discussed in Table 2.1, buying the call

option at ce, and selling the call position, involving selling the underlying stock

at S(0), and the corresponding put option at pe and lending K · B(t, T ) money
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b b

ce ce

b b

pe pe

b b

ce pebuy sell

pe − ce = K · B(t, T ) − S0

Figure 2.2: The changes of put-call parity for interval prices

from the bank. And when it comes to the other situation, ce > ce, pe < pe, then

ce − pe ≥ S(0) −K · B(t, T ), one can get money M by selling the call option and

buying a call position, including buying the corresponding put option at pe, the

underlying stock at S(0), and borrowing money K ·B(t, T ) from bank.

It is evident that as if the NPI investor can find the chance and take action in

the market, the investor will gain a certain profit by manipulating the products in

this market. This property also supports the view that imprecise probability gen-

eralizes classical probability theory from the perspective of easing representation

of uncertainty [6]. Moreover, imprecise prices offer an opportunity to consider in-

vestors’ risk attitudes during the pricing process. From aforementioned statements,

we know that an investor will buy an option when the price is lower than or equal

to the lower boundary, and sell the option when the price is greater than or equal to

the upper boundary. When it comes to values between the boundaries, an investor

may choose to hold the security and watch the markets. The investor considered

here is the risk-averse investor. In reality, whether an investor takes action or not

depends on one’s risk attitude, which can be estimated by risk aversion function,

and more discussion will be studied in the future.
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2.3 Performance study

In this section, we study the performance of the NPI method for European

options in comparison to the CRR model. If there are only two investors in the option

market, the CRR investor and the NPI investor, we would like to see the expected

profit and loss (P&L) of the NPI investor in the trades with the CRR investor. We

consider two scenarios, first the CRR model correctly captures the future market

trend, meaning the real market stock price at maturity equals the expected stock

price from the CRR model. In the second scenario, the CRR model is wrong about

the future market trend, indicating the real market probability is different from the

risk-neutral probability. Whereas in both scenarios the NPI method predicts based

on the historical data.

In these two scenarios, we would like to compare payoffs from the NPI method

and CRR model based on the same option with the same underlying stock at first

to eliminate the error of using the expected stock return as the discount rate. By

ignoring time discounting at this stage, we can regard the expected payoffs as the

expected price and denote the NPI upper and lower expected prices as V and V ,

as well as the expected CRR price V CRR, equal to the expected option payoffs E,

E and ECRR, respectively. When m is fixed, the key factor in the comparison is

s. Other factors of the NPI method and the CRR model are also fixed, including

the number of historical data n. Different values of s lead to different NPI payoffs,

so compared to the CRR payoff this will result in different trading actions. The

CRR payoff formulated by Equation (1.9) for a call option or Equation (1.10) for a

put option with rf = 0 is a constant value, while NPI payoffs vary with s. There

are three trading cases according to s. When the CRR payoff is in between the

maximum buying and the minimum selling NPI payoffs, there is no trade between

the two investors. Otherwise, the NPI investor will either sell an option or buy

it depending on whether the CRR payoff is lower than the maximum buying NPI

payoff or higher than the minimum selling NPI payoff. As the worst result that
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the NPI investor will have eventually is the focus of evaluation, the NPI investor is

assumed to quote the maximum buying price or the minimum selling price, and any

trade occurs at these prices.

2.3.1 Scenario 1: The CRR investor is correct

In this scenario, we assume that the CRR investor is correct, meaning the upward

movement probability in the real market p is equal to the risk-neutral probability q

used by the CRR investor, and the option payoff has the same value as the expected

payoff from the CRR model. Equations (2.10) and (2.12) are applied to compute

the NPI call option bound payoffs, and Equations (2.11) and (2.13) for the NPI put

option bound payoffs. Each of the expected minimum selling payoff and the expected

maximum buying payoff have an intersection point with the expected CRR payoff,

and we note each two intersection points as s1 and s2 for call option (s1 ≤ s2) and

s3 and s4 for put option (s3 ≤ s4). In this case the value sq, the number of success

historical data under the constraint sq
n

= q, is in the interval of two intersection

points, s1 ≤ sq ≤ s2 for the call option and s3 ≤ sq ≤ s4 for the put option, for

if s = sq the CRR expected value is between the lower and upper expected values.

Therefore, for the call option there exist inequalities s1
n

≤ q ≤ s2
n

and for the put

option there exist inequalities s3
n
≤ q ≤ s4

n
. After the analytic study for NPI payoff

patterns, we learn for the call option the maximum buying payoff and the minimum

selling payoff increase as s increases whereas for the put option they decrease as s

increases. Then different trading actions of the NPI investor according to different

s are presented below.

For the call option:

Case 1.1: s ≥ s2

In this case, because of s
n
≥ s2

n
≥ q, the NPI investor would be more optimistic

than the CRR investor about the underlying stock future price, and the expected
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maximum buying price Vc is higher than the fair price V CRR
c from the CRR model,

so the NPI investor would like to buy a call option. As in this scenario the CRR

investor is right, the loss of the NPI investor in this case depends on this option

exercise.

Under the situation that at maturity this call option is exercised the loss of the

NPI investor can be formulated as below. If the NPI maximum buying price Vc is

quoted, so the NPI investor needs to pay the buying price as the payment for this

call option and gain the profit from the payoffs ST − Kc. Then the loss L for the

NPI investor in this case under this situation is:

L(n,m, s : s ≥ s2|V = Vc) = Vc − ST +Kc

= Ec[Sm −Kc]
+ − ECRR

c [Sm −Kc]
+

=
m∑

k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

×

[(
m+ n

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)
−
(
m

k

)
qk(1− q)m−k

]

=
m∑

k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m

k

)[(
n+m

s+ k

)−1(
n

s

)
s

s+ k
− qk(1− q)m−k

]
(2.27)

Here Vc − V CRR
c = Ec[Sm − Kc]

+ − ECRR
c [Sm − Kc]

+. Since the prediction of the

CRR investor is totally right, the payoff at maturity ST −Kc is equal to the CRR

expected payoff ECRR
c [Sm −Kc]

+.

The other circumstance is that the NPI investor does not exercise this call option

causing a loss of this call option price Vc as calculated in Equation (2.28).

L(n,m, s : s ≥ s2|V = Vc) = Vc

= Ec[Sm −Kc]
+

=
m∑

k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m+ n

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(2.28)
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Case 1.2: s2 > s > s1

In this case, there is no action between the two investors, as the market price is

higher than the NPI investor’s expected maximum buying price and lower than the

expected minimum selling price, Vc < V CRR
c < Vc;

L(n,m, s : s2 > s > s1) = 0 (2.29)

Case 1.3: s ≤ s1

In this case, the expected CRR price V CRR
c is higher than the minimum selling

price of the NPI investor Vc, so the NPI investor would like to sell a call option. If

we want to value the loss of the NPI investor L, two situations happen according

to this option exercise. First, when the call option is exercised eventually, longing

a call option is the wise action. As we assume the CRR investor is correct, which

means the opposite action taken by the NPI investor is wrong, so the NPI investor

will face an amount to lose for selling a call option. In this case, two parts are

constituting this profit and loss; one part is the payoffs spread ST −K, where ST is

the actual stock price at maturity. The other part is the profit gained by selling this

call option Vc, and under our assumptions we use the expected payoff instead of the

price Vc = Ec[Sm −Kc]
+. Due to the assumption about the perfection of the CRR

model, that the stock price at maturity equals to the expected stock price, the payoff

spread at maturity is equal to the expected CRR payoff, ST −K = ECRR
c [Sm−Kc]

+.

The formula below calculates the loss of the NPI investor when the minimum selling

price is quoted:
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L(n,m, s : s1 ≥ s|V = Vc) = ST −Kc − Vc

= ECRR
c [Sm −Kc]

+ − Ec[Sm −Kc]
+

=
m∑

k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

×

[(
m

k

)
qk(1− q)m−k −

(
m+ n

m

)−1(
s+ k

k

)(
n− s+m− k − 1

m− k

)]

=
m∑

k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m

k

)[
qk(1− q)m−k −

(
n+m

s+ k

)−1(
n

s

)
n− s

n− s+m− k

]

(2.30)

For the other situation, when this call option is not exercised, selling a call option

is a good choice leading to a profit of the NPI investor, the call option price. The

loss of the NPI investor in this situation is harmful as follows:

L(n,m, s : s1 ≥ s|V = Vc) = −Vc

= −Ec[Sm −Kc]
+

= −
m∑

k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m+ n

m

)−1(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(2.31)

Expected loss of the NPI investor for a call option

After the calculation of the loss of the NPI investor comparing to the correct CRR

investor according to each different s cases, we would like to evaluate the expected

loss. Given what we have discussed above, s follows the binomial distribution s ∼

Bin(n, q) in this example, so the expected loss L(q) can be formulated as:
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If the call option is exercised, the expected loss of the NPI investor is

Ec[L(s)]

=

s1∑
s=0

L(n,m, s : s < s1|V = Vc)

(
n

s

)
qs(1− q)n−s

+
n∑

s=s2

L(n,m, s : s > s2|V = Vc)

(
n

s

)
qs(1− q)n−s

=

s1∑
s=0

m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m

k

)(
n

s

)

×

[
qk+s(1− q)n+m−s−k −

(
n+m

s+ k

)−1(
n

s

)
n− s

n− s+m− k
qs(1− q)n−s

]

+
n∑

s=s2

m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m

k

)(
n

s

)

×

[(
n+m

s+ k

)−1(
n

s

)
qs(1− q)n−s s

s+ k
− qk+s(1− q)n+m−s−k

]
(2.32)

If not, the expected loss of the NPI investor is

Ec[L(s)]

=

s1∑
s=0

L(n,m, s : s < s1|V = Vc)

(
n

s

)
qs(1− q)n−s

+
n∑

s=s2

L(n,m, s : s > s2|V = Vc)

(
n

s

)
qs(1− q)n−s

= −
s1∑
s=0

m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

×
(
m+ n

m

)−1(
s+ k

k

)(
n− s+m− k − 1

m− k

)(
n

s

)
qs(1− q)n−s

+
n∑

s=s2

m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

×
(
m+ n

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)(
n

s

)
qs(1− q)n−s (2.33)
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For the put option:

Case 1.4: s ≥ s4

The CRR price is higher than the minimum NPI selling price, so the NPI investor

would like to sell this put option and gain the put option price Vp. If this put option

has a negative payoff at maturity, then, in this case, the loss L can be calculated as:

L(n,m, s : s ≥ s4|V = Vp) = −Vp

= −Ep[Kp − Sm]
+

= −
⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
n+m

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(2.34)

Here V is the price that the NPI investor quoted in the market equal to the minimum

NPI selling price. Like what happened in the call option, rather than actual prices Vp

we use the minimum selling payoff Ep[Kp−Sm]
+, because we try to avoid influences

by the discount factor at the start of our study.

However, if this put option has a positive payoff, selling a put option is not

smart, as it will cause some loss from this put option exercise by the CRR investor,

then the NPI investor needs to pay the payoff Kp−ST . The loss of the NPI investor

is,

L(n,m, s : s ≥ s4|V = Vp) = Kp − ST − Vp

= ECRR
p [Kp − Sm]

+ − Ep[Kp − Sm]
+

=

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

×

[(
m

k

)
qk(1− q)m−k −

(
n+m

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)]

=

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
m

k

)[
qk(1− q)m−k −

(
n+m

s+ k

)−1(
n

s

)
s

s+ k

]
(2.35)

The payoff of this put option at maturity is identical to the expected value of this

put option from the CRR model, Kp−ST = ECRR
p [Kp−Sm]

+, under the assumption
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of the CRR model perfection.

Case 1.5: s4 > s > s3

In this case, the CRR price is in the interval of NPI prices, so there is no trans-

action when this case is encountered. Therefore, in this case, there is no loss.

L(n,m, s : s4 > s > s3) = 0 (2.36)

Case 1.6: s ≤ s3

The CRR price is lower than the maximum NPI buying price. The NPI investor

will buy a put option from the CRR investor paying this put option price Vp. If the

NPI investor buys the right to exercise from the market but not exercise at maturity,

the put option price quoted at the maximum NPI buying price is the loss.

L(n,m, s : s ≤ s3|V = Vp) = Vp

= Ep[Kp − Sm]
+

=

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
m+ n

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(2.37)

Under the same assumptions as that in the first scenario of this put option, the price

is taken place by the payoff Vp = Ep[Kp − Sm]
+. But if this put option is exercised,

the NPI investor can get the payoff of this put option Kp −ST . The loss of the NPI

investor in this situation is:
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L(n,m, s : s ≤ s3|V = Vp) = Vp −Kp + ST

= Ep[Kp − Sm]
+ − ECRR

p [Kp − Sm]
+

=

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

×

[(
m+ n

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)
−
(
m

k

)
qk(1− q)m−k

]

=

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
m

k

)[(
m+ n

s+ k

)−1(
n

s

)
n− s

n− s+m− k
− qk(1− q)m−k

]
(2.38)

Expected loss of the NPI investor for a put option

After calculating the loss in each case, we would like to explore the value of

the expected loss for this put option with the same underlying stock according to

s ∼ Bin(n, q), and the formulae are listed below:

The put option payoff is negative, then the expected loss for this put option is

Ep[L(s)]

=

s3∑
s=0

L(n,m, s : s ≤ s3|V = Vp)

(
n

s

)
qs(1− q)n−s

+
n∑

s=s4

L(n,m, s : s ≥ s4|V = Vp)

(
n

s

)
qs(1− q)n−s

=

s3∑
s=0

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
m+ n

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)(
n

s

)
qs(1− q)n−s

−
n∑

s=s4

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
n+m

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)(
n

s

)
qs(1− q)n−s

(2.39)
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Otherwise, the expected loss for this put option is

Ep[L(s)]

=

s3∑
s=0

L(n,m, s : s ≤ s3|V = Vp)

(
n

s

)
qs(1− q)n−s

+
n∑

s=s4

L(n,m, s : s ≥ s4|V = Vp)

(
n

s

)
qs(1− q)n−s

=

s3∑
s=0

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
m

k

)(
n

s

)

×

[(
m+ n

s+ k

)−1(
n

s

)
n− s

n− s+m− k
qs(1− q)n−s − qk+s(1− q)n−s+m−k

]

+
n∑

s=s4

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
m

k

)(
n

s

)

×

[
qk+s(1− q)n−s+m−k −

(
n+m

s+ k

)−1(
n

s

)
s

s+ k
qs(1− q)n−s

]
(2.40)

An interesting characteristic is disclosed in the NPI expected loss formulae for

both the call and the put option in this scenario. We started with imprecise NPI

prices, but ended up getting a precise expected loss, for each s, the trading action

for the NPI investor is determined compared to the CRR price, so only one NPI

price is taken into account for each case, and the loss becomes an explicit value as

action price is settled. This explicit value of expected NPI loss is convenient for us

to compare the two pricing methods.

Example 2.1

After discussing three trading cases for each type of option according to s, we

would like to compare the payoffs in an example. At first, we need to define some

input values. For the binomial tree, the initial stock price S0 = 20, and at every next

step this stock price will either go up with the upward factor u = 1.1 or go down

with the downward factor d = 0.9. We set the same strike price Kc = Kp = 21 for

both the call option and the put option. We set a risk-neutral probability q equal to
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0.65, which is identical to the real market probability of movements, q = p = 0.65.

Since we assume the CRR model is right in this scenario, then the proportion of

upward movements s
n

of historical data should follow the CRR prediction. To do this

analytical study, understanding patterns of payoffs according to s and calculating

the expected profit or loss of the NPI investor, if total historical data n is equal to

50, s will follow the binomial distribution s ∼ Bin(50, 0.65). In this example, we

will first plot the patterns of all payoffs with a fixed maturity, then we would like to

know the expected loss of the NPI investor with varying m. Finally, since the NPI

method is based on historical data, we want to check if the expected loss of the NPI

investor will get better when we enlarge the historical data n.

We want to compare the two methods with m = 4. Payoff patterns for call

and put options are plotted in Figure 2.3, and it displays that three cases for each

type option we mentioned above. In this example, the values of intersection points

between NPI payoffs and the CRR payoff are gained using Newton-Raphson root-

finding method [60, 66]. For a call option, the intersection between s1 value of the

NPI upper payoff and the CRR payoff equals to 31.86541, and the intersection s2 of

the NPI lower payoff and the CRR payoff equals to 32.8654. For this put option, s3

equal to 32.46275, and s4 equals to 33.46276, which are the points of the NPI lower

payoff intersecting with the CRR payoff and the NPI upper payoff intersecting with

the CRR payoff. According to s values of the intersection, we can tell when s
n

is

equal to values near to q, the CRR payoff in the interval of NPI payoffs, no trading

action exists in this circumstance. When s falls outside the intersection interval

[s1, s2] or [s3, s4], the NPI investor and the CRR investor will trade with each other,

then NPI investor will either gain profit from the CRR investor or lost the money.

Since we assume the CRR investor is always right, so we expect NPI investor to face

an amount of loss during their trades. As the loss of the NPI investor for different

cases can be estimated, and we know the distribution s follows, the expected loss in

this scenario for the NPI investor is available.
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Figure 2.3: Expected payoff of European options from both the NPI method and the CRR
model in Scenario 1
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As we know, if the NPI investor has decided to invest in an option based on a

specific underlying stock, all input values are fixed except the number m of future

steps. Then the influence of varying m toward expected NPI losses is of interest.

In this example, the call option is exercised but the put option not, so Equations

(2.32) and (2.39) are used to calculate the expected loss of the NPI investor, and

we reveal expected NPI losses with various m in Figure 2.4.

From Figure 2.4, there is no doubt no matter call or put option the NPI investor

decides to invest in and how long the maturity is, the NPI investor is always expected

to face an amount of loss. What is more, the expected loss manifests that it is

wise to take part in short-term investment rather than long-term one for the NPI

investor, because the NPI expected loss increases more than linearly as m increases.

The reason that the expected loss pattern shows the convexity as m increases is

the pattern of the NPI payoff for call option gets more and more convex along

with increasing m, and the part s ≥ s2 of the NPI expected payoff for call option

takes a big part of the expected loss. However, there is a gap in the graph of

expected loss for the call option, and for the put option, the expected NPI loss

is in a stairs type raise. The reason for these is payoffs’ intersections movements

when m increases, shown in Figure 2.5. In this figure, we plotted s integer value of

varying intersection points, s1 and s2 for the call option and s3 and s4 for the put

option, along with increasing m. As we illustrated in the expected loss formulas,

the expected loss consists of differently weighted losses in different cases according

to s, and intersection movements affect probabilities of each part losses. Since s1,

s2, s3, and s4 in the NPI pricing formulas are supposed to be integers, and s1 and

s3 are transferred to the first integer less than their values, while s2 and s4 become

the first integer greater than their values. It is clear from Figure 2.5 that when

we change intersection values into their corresponding integers, for the call option

there is a step down of s1 and s2 which explains why there is a sudden decrease gap

in the expected loss pattern for the call option. For put option s3 and s4 increase
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Figure 2.4: Expected loss for the NPI investor in Scenario 1
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Figure 2.5: Intersection s move with varying m

values in steps with m, resulting in a stairs type expected loss increase. All these

characteristics of s intersection values can explain the pattern of the expected loss.

Although under assumptions of this scenario the NPI investor will always pay for

the wrong prediction, this situation can be improved if more historical information

can be reached. A 3D plot for a call option shown in Figure 2.6, the expected loss of

the NPI investor with increasing historical data n and varying maturity m, supports

this statement. It denotes that for each maturity m, as we raise n, the expected loss

decreases, except when n and m are both very small. When n is low, the interval

between the maximum buying price and minimum selling price is vast, and when m

is very small, the patterns of the NPI prices resemble a straight line. Therefore, a

small amount of loss from the s ≥ s2 and a small amount of profit s ≤ s1 cancel each

other out. However, as m is not too small, we can minimize the expected loss by

increasing n. When n is small each increment of probability in each time step, for

instance s
n+1

moving to s+1
n+2

, changes greatly. Whereas for larger n, lower and upper

probabilities at every step are more stable and approaching to q for calculating the

expected loss of the NPI method in this scenario s ∼ Bin(n, q). Illustration from

the financial aspect also makes sense, which when an investor has more trustable
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Figure 2.6: Influence on the expected loss with increasing historical data (call option):
n = N ×m

historical information, his prediction is more accurate compared to the market, and

there is less chance he will lose money. Overall, under the assumption that the CRR

investor knows every information to forecast a right price, the NPI investor would

not be expected to perform better than the CRR investor, and the longer the NPI

investor in this game the more expected losses he will give up on. However, since

our method keeps learning from historical data, if there are more historical data

available the loss will decrease.

2.3.2 Scenario 2: The CRR investor is wrong

In this scenario, there are also three possible trading actions the NPI investor

may take according to the value of s. As in Scenario 1, for the call and put options

there are two intersections between the NPI expected prices and the CRR expected

price, and these intersections’ positions depend on q. We note the intersections

for call option as s5 and s6 (s5 ≤ s6) and for put option as s7 and s8 (s7 ≤ s8).
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The relationship happening in Scenario 1 still valid, s5
n
≤ q ≤ s6

n
for the call option

s7
n
≤ q ≤ s8

n
for the put option. However, in this scenario the real market probability

p is different from the risk-neutral probability q, and we assume that historical data

can reflect the market at some level, s ∼ Bin(n, p). Thus, even though there still

exist three cases of trading according to the value of s, the case that has the highest

chance to occur is s
n

around p but q. We expect the NPI investor will get some profit

since the CRR investor is wrong. The profit of the NPI investor in three cases for

each type option is listed below:

For the call option:

Case 2.1: s ≤ s5

When s ≤ s5 the NPI investor would like to sell a call option to the CRR investor

and gain the call option price Vc as the profit. If this call option will have a positive

payoff, then selling a call option will cause some loss from this call option exercise

by the CRR investor, ST −Kc. Then the profit Pro(·) of the NPI investor is:

Pro(n,m, s : s ≤ s5|V = Vc) = Vc − ST +Kc

= Ec[Sm −Kc]
+ − ECRR

c (p)

=
m∑

k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

×

[(
m+ n

m

)−1(
s+ k

k

)(
n− s+m− k − 1

m− k

)
−

(
m

k

)
pk(1− p)m−k

]

=
m∑

k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m

k

)[(
n+m

s+ k

)−1(
n

s

)
n− s

n− s+m− k
− pk(1− p)m−k

]

(2.41)

Here we neglect the difference between option payoffs and option premiums Vc =

Ec[Sm −Kc]
+ because of the assumption that the contract settlement date is close

to the expiration date. As the call option payoff at maturity is hard to estimate, we

used the expected value from the CRR model with the probability p.
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Another situation is that this call option has a negative payoff, then the NPI

investor can earn this call option price without worrying about the CRR investor

will exercise it at maturity. And the profit for this case can be formulated as follows:

Pro(n,m, s : s ≤ s5|V = Vc) = Vc

= Ec[Sm −Kc]
+

=
m∑

k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m+ n

m

)−1(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(2.42)

Case 2.2: s5 < s < s6

There is no transaction in this case, for the CRR price falls in the interval between

the minimum selling price and the maximum buying price.

Pro(n,m, s : s6 > s > s5) = 0 (2.43)

Case 2.3: s ≥ s6

When s ≥ s6 occurs, the CRR expected price is lower than the NPI maximum

buying price, so that the NPI investor will buy this call option. So if at maturity

this call option is exercised, then this trading is active. The NPI investor needs to

pay this call option price but wins the payoff at maturity.



2.3. Performance study 54

Pro(n,m, s : s ≥ s6|V = Vc) = ST −Kc − Vc

= ECRR
c (p)− Ec[Sm −Kc]

+

=
m∑

k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

×

[(
m

k

)
pk(1− p)m−k −

(
m+ n

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)]

=
m∑

k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m

k

)[
pk(1− p)m−k −

(
n+m

s+ k

)−1(
n

s

)
s

s+ k

]
(2.44)

If this call option is not exercised at maturity, although the CRR investor made

the wrong prediction for the stock upward movement probability, the historical data

providing the information is worse than the CRR prediction. The result misleads the

NPI investor to a wrong decision, buying a call option, and this will cause an amount

of loss. The loss is the maximum buying price from our NPI method. Therefore,

the loss of the NPI investor is,

L(n,m, s : s ≥ s6|V = Vc) = Vc

= Ec[Sm −Kc]
+

=
m∑

k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m+ n

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(2.45)

Expected profit of the NPI investor for a call option

After listing the profit and loss formulas for three cases, it is time to calculate

the expected profit of the NPI investor. In this scenario, s ∼ Bin(n, p) and the

intersections depend on the expected value from the CRR model, so both p and q

influence the expected profit of the NPI investor.

When the call option is exercised, then the expected profit of the NPI investor

is
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Ec[Pro(p, s)] =

s5∑
s=0

Pro(n,m, s : s ≤ s5|V = Vc)

(
n

s

)
ps(1− p)n−s

+
n∑

s=s6

Pro(n,m, s : s ≥ s6|V = Vc)

(
n

s

)
ps(1− p)n−s

=

s5∑
s=0

m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m

k

)(
n

s

)

×

[
ps(1− p)n−s

(
n+m

s+ k

)−1(
n

s

)
n− s

n− s+m− k
− ps+k(1− p)n−s+m−k

]

+
n∑

s=s6

m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m

k

)(
n

s

)

×

[
ps+k(1− p)n−s+m−k − ps(1− p)n−s

(
n+m

s+ k

)−1(
n

s

)
s

s+ k

]
(2.46)

Note that this formula depends on q, because values of intersections s5 and s6 are

calculated according to q. When this call option is not exercised at maturity, the

expected profit of the NPI investor is,

Ec[Pro(p, s)] =

s5∑
s=0

Pro(n,m, s : s ≤ s5|V = Vc)

(
n

s

)
ps(1− p)n−s

−
n∑

s=s6

L(n,m, s : s ≥ s6|V = Vc)

(
n

s

)
ps(1− p)n−s

=

s5∑
s=0

m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

×
(
m+ n

m

)−1(
s+ k

k

)(
n− s+m− k − 1

m− k

)(
n

s

)
ps(1− p)n−s

−
n∑

s=s6

m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

×
(
m+ n

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)(
n

s

)
ps(1− p)n−s (2.47)
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For the put option:

Case 2.4: s ≤ s7

The CRR price is lower than the maximum NPI buying put option price, which

will result in the NPI investor buy this put option from the CRR investor. If this

put option is not exercised, then, in this case, the NPI investor will lose the put

option fee. The formula of the NPI loss is listed below.

L(n,m, s : s ≤ s7|V = Vp) = Vp

= Ep[Kp − Sm]
+

=

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
m+ n

m

)−1(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(2.48)

Here Vp = Ep[Kp−Sm]
+ means we assume the discount procedure can be neglect in

this step. When the put option is exercised at maturity, the NPI investor pays the

put option price and gain the payoff of this put option Kp − ST . The profit earned

by the NPI investor is,

Pro(n,m, s : s ≤ s7|V = Vp) = Kp − ST − Vp

= ECRR
p (p)− Vp

= ECRR
p (p)− Ep[Kp − Sm]

+

=

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

×

[(
m

k

)
pk(1− p)(m−k) −

(
m+ n

m

)−1(
s+ k

k

)(
n− s+m− k − 1

m− k

)]

=

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
m

k

)[
pk(1− p)(m−k) −

(
n+m

s+ k

)−1(
n

s

)
n− s

n− s+m− k

]
(2.49)

As we can not know the real put option payoff in this scenario, we assume the

real payoff is approximately equal to the value calculated by the CRR model with
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risk-neutral probability p.

Case 2.5: s7 < s < s8

In this case, s falls in between of s7 and s8, where no trading action occurs,

for the CRR price is higher than the maximum buying price and lower than the

minimum selling price.

Pro(n,m, s : s7 < s < s8) = 0 (2.50)

Case 2.6: s ≥ s8

In this case, the CRR expected price is higher than the minimum selling price,

and then the NPI investor sells this put option. If the CRR investor is not able to

exercise this put option at maturity, the NPI investor will gain the price without

any payment, then the profit in this case is,

Pro(n,m, s : s ≥ s8|V = Vp) = Vp

= Ep[Kp − Sm]
+

=

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
m+ n

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(2.51)

But when the stock price is not optimistic, and the CRR investor will exercise

the put option, the NPI investor will take a wrong action, selling the put option,

which violates to the real market. The NPI investor will face a payment as put

option payoffs, which is larger than the profit earned by selling put option price.
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L(n,m, s : s ≥ s8|V = Vp) = Kp − ST − Vp

= ECRR
p (p)− Ep[Kp − Sm]

+

=

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

×

[(
m

k

)
pk(1− p)(m−k) −

(
m+ n

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)]

=

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
m

k

)[
pk(1− p)(m−k) −

(
n+m

s+ k

)−1(
n

s

)
s

s+ k

]
(2.52)

Expected profit of the NPI investor for a put option

Eventually, we can get the expected profit of put option computing as below:

When the investor is optimistic about the underlying asset and this put option

is not going to be exercised, the expected profit of the NPI investor is

Ep = [Pro(p, s)] =

s7∑
s=0

L(n,m, s : s ≤ s7|V = Vp)

(
n

s

)
ps(1− p)n−s

+
n∑

s=s8

Pro(n,m, s : s ≥ s8|V = Vp)

(
n

s

)
ps(1− p)n−s

= −
s7∑
s=0

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

×
(
m+ n

m

)−1(
s+ k

k

)(
n− s+m− k − 1

m− k

)(
n

s

)
ps(1− p)n−s

+
n∑

s=s8

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

×
(
m+ n

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)(
n

s

)
ps(1− p)n−s (2.53)
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When this put option is exercised, the expected profit of the NPI investor is

Ep[Pro(p, s)] =

s7∑
s=0

Pro(n,m, s : s ≤ s7|V = Vp)

(
n

s

)
ps(1− p)n−s

−
n∑

s=s8

L(n,m, s : s ≥ s8|V = Vp)

(
n

s

)
ps(1− p)n−s

=

s7∑
s=0

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
m

k

)(
n

s

)
ps(1− p)n−s

×

[
pk(1− p)(m−k) −

(
n+m

s+ k

)−1(
n

s

)
n− s

n− s+m− k

]

−
n∑

s=s8

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0]

(
m

k

)(
n

s

)
ps(1− p)n−s

×

[
pk(1− p)(m−k) −

(
n+m

s+ k

)−1(
n

s

)
s

s+ k

]
(2.54)

Example 2.2

We have learned about how much profit or loss the NPI investor will face in every

case as well as the expected profit. Then we would like to illustrate the performance

comparison in an example. As we discuss the NPI method for European options

versus the CRR model under the assumption that the CRR model deviates from

the real market value in the future, we input the risk-neutral probability q = 0.65,

while the real market probability of upward movement is p = 0.25. This means

based on information from the market, the stock’s future is not bright, and its price

will drop. However, the CRR investor overvalues this stock believing its price will

rise, whereas the NPI investor has a high chance to predict it right based on the

historical data. All other inputs in this example stays the same as in Example 2.1,

S0 = 20, Kc = Kp = 21, u = 1.1, d = 0.9, n = 50. Since q does not change, payoffs

calculated from Equations (1.9) and (1.10) stay the same. But NPI results computed

with Equations (2.10) and (2.12) for call option and Equations (2.11) and (2.13) for

put option are different, for the analytical study of payoff patterns according to s
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and expected profit or loss calculation in this scenario s ∼ Bin(50, 0.25) meaning s
n

is around p rather than q. As Example 2.1, we would like to study the performance

in three ways. First, we would like to learn the pattern of each expected value from

both pricing method with fixed m. Then knowing the expected profit of the NPI

investor with varying m is what we intend to do. Finally, we want to check the

influence of n on the expected profit of the NPI investor.

As an example, we predict option payoffs in four future steps, m = 4, and plot

them in Figure 2.7. The whole patterns of NPI payoffs and the CRR payoff with

s from 0 to 50 are the same as in Scenario 1, and intersections between our NPI

payoffs and the CRR payoff are the same. But to distinguish from intersections in

Scenario 1, we use different notations, then s5 = s1 = 31.86541, s6 = s2 = 32.8654,

s7 = s3 = 32.46275 and s8 = s4 = 33.46276. The only different part is the area

that s has a high chance to fall in, which is the part of payoffs we mainly focus on,

shown in two graphs standing for each option type in Figure 2.7. From the figure,

it is clear that for call option the NPI investor has higher chance to sell the call

option as well as for put option the NPI investor is more willing to buy the put

option from the CRR investor, and both two actions gain profit. There also exist

possibilities that the historical data offers worse information than the CRR model’s

assumptions, issuing in the NPI investor will buy a call option or sell a put option,

although the likelihood of that happening is quite low. Overall, we look forward to

seeing that in Scenario 2, the NPI investor will gain some profit, and this guess is

confirmed by plotting expected profit for both call and put options in Figure 2.8.

As in Scenario 1, after investigating trading actions in all kinds of s cases, we

know the exact quote price for each case, finally leading us to a precise expected

profit or loss. Based on the expected profit formulas Equations (2.47) and (2.54),

it is easier for an investor to choose the maturity with the NPI method. After all,

once an option to a specific underlying asset has been settled the only factor which

will influence the price is the maturity. We plot the expected profit with varying m
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Figure 2.7: Payoffs from the NPI method for European options and the CRR model in
Scenario 2
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Figure 2.8: Expected profit from the NPI method for European options and CRR model
in Scenario 2
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Figure 2.9: Influence on the expected profit with increasing historical data (put option):
n = N ×m

for the call option and the put option in Figure 2.8.

It turns out, under the assumption that the CRR investor makes a wrong pre-

diction with opposite trading direction, the NPI investor is expected to gain some

positive profit no matter which type of option. The price of this call option causes

the fluctuation and the convex shape of the NPI profit for the call option. As m

increases, the pattern of NPI expected prices for this call option according to s be-

comes more convex. The concave shape of expected profits for the put option is

caused by the competition between the payoff Kp − ST and the option price, for

they have opposite moving directions when m increases. In our example, the stock

price will end up going down, so playing with a put option is a safer choice with less

profit because the more risk exists the higher return an investor can get. In general,

according to the predicted direction of stock price movement, buying a relevant op-

tion is better and safer than selling an opposite direction option, which is already

commonly agreed in the real market. When we increase n in this scenario, the profit

of the NPI investor reduces, except when n and m are both small. The reason for no
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gain with small n and m is the same as that in Example 2.1, and we plotted the NPI

expected a profit for the put option to confirm our point in Figure 2.9. Like what we

have discussed in Scenario 1, enlarging historical data makes the forecasting from

the NPI method close to market behavior with more stable movement probabilities

in the binomial tree, then the difference between the NPI prediction and the CRR

real market prediction narrows down. From the perspective of the financial market,

the more effective prediction closing to the real market an investor gets, the less

opportunity exists to beat the market, so an investor would never take action if the

forecast is the same as the real market.

Example 2.3

In this example, we want to see if the CRR model predicts a wrong probability

but with the same direction as the real market, p > 0.5 and q > 0.5 with q ̸= p

or p < 0.5 and q < 0.5 with q ̸= p. All inputs in this example are the same as in

Example 2.2, except q = 0.45 leading to a different value of the intersections with

fixed m. However, the most interesting problem is the expected profit of the NPI

investor in this example.

Even though in this example the CRR prediction and the real market have the

same direction, the stock price will go downwards, so we should still use Equations

(2.47) and (2.54) to calculate the expected profit of the NPI investor. The results of

the put option prediction are plotted in Figure 2.10, showing that when n and m are

both small the NPI investor will face some loss, because the historical information

is not enough for the NPI investor to act effectively and small m makes the NPI put

option payoff pattern according to s steeper for the area holding greatest probability.

However, if we increase n, both profit and loss will approach zero as we have already

discussed in Examples 2.1 and 2.2.

We have performed a more detailed study of the expected profit of the NPI

investor for varying values of q given p. In Table 2.2, we set the real market prob-
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Figure 2.10: Influence on the expected profit with increasing historical data (put option):
n = N ×m

ability p = 0.25, and S0 = 20, Kc = Kp = 21, u = 1.1, d = 0.9. We calculated

the expected profit according to different q. In this study, by 40 historical data we

discover that for a difference between q and p = 0.25 is greater than 0.1, the NPI

investor is expected to gain some profit by investing in either a European call or

put option with maturity identical to 2. As n increases, the absolute value of the

expected profit narrows down like what displays in Figures 2.9 and 2.10. The reason

is when n increases, meaning the NPI investor has more information from the mar-

ket, the interval between the maximum buying price and the minimum selling price

gets smaller, approaching to the fair market price, this gives fewer opportunities

for the NPI investor to beat the market. Therefore, along with increasing n, the

NPI investor will gain less profit from a two time-step European option with a large

difference between p and q, while losing less money with a small difference between

p and q. If we increase the maturity to m = 4 time steps, with fixed n, the trend of

results referring to different levels of differences between p and q is identical to the

one when m = 2. But for the option with m = 4, based on the same fixed corre-



2.3. Performance study 66

sponding historical data, the NPI investor will face more loss when the p and q are

close to each other comparing to that when m = 2. Thus if there exists more data

information given a fixed option maturity, the interval of the difference between q

and p leading to a negative profit for the NPI investor are smaller than those based

on less data information. We have investigated further cases, including other values

of p, for the problem of the expected profit according to differences between p and

q is similar as discussed above.

p = 0.25
Expected Profit

m = 2 m = 4
n = 40 n = 100 n = 200 n = 40 n = 100 n = 200

q call put call put call put call put call put call put
0.15 -0.22 0.00 -0.21 -0.10 -0.20 0.01 -0.23 0.00 -0.19 0.03 -0.18 0.02
0.25 -0.17 -0.24 -0.11 -0.17 -0.08 -0.13 -0.19 -0.46 -0.12 -0.34 -0.09 -0.25
0.35 0.13 -0.10 0.21 0.01 0.21 0.02 0.05 -0.18 0.18 0.02 0.19 0.03
0.45 0.25 0.07 0.22 0.04 0.21 0.02 0.25 0.14 0.21 0.07 0.19 0.04
0.55 0.26 0.09 0.22 0.04 0.21 0.02 0.28 0.18 0.22 0.07 0.19 0.04
0.65 0.26 0.09 0.22 0.04 0.21 0.02 0.28 0.18 0.22 0.07 0.19 0.04
0.75 0.26 0.09 0.22 0.04 0.21 0.02 0.28 0.18 0.22 0.07 0.19 0.04

Table 2.2: Expected profit and loss changing with p and q difference (p = 0.25)

From the examples above, it is evident that the NPI method performs better than

the CRR model when the CRR model is under the wrong assumptions. When the

CRR model is right about the market, the prediction of the NPI method is different

from that of the CRR model, but this difference can be reduced by enlarging the

historical data size. A massive difference between the real market probability and

the risk-neutral probability also improves the NPI performance.

2.3.3 Performance study including discount rate

To be more comprehensive, we now included the discount rate in the performance

study. As we mentioned, in our method we assume the discount rate is equal to the

non-negative expected return of the underlying asset, as the expected return of the

underlying asset is changing along with the time step, we assume the discount rate

as a constant value is the expected return of the underlying asset from the initial
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time to time 1. The discount rate cannot be negative because if the discount rate is

negative, then the future payment is less than the initial amount. Nobody would like

to get involved in a sure loss trade. Although the expected return of the underlying

asset is lower than the actual discount rate, an option suppose to have, for the

analytical study it is the best choice of approximation of the discount rate.

All other assumptions in this study are the same as in the one without the

discount rate. We can still use the same formulae to compute the profit and loss.

But now the NPI investor will quote at the price calculated from Equations (2.14)

and (2.15) for call options and Equations (2.16) and (2.17) for put options, and

get or pay the maturity payoff calculated from Equations (2.10) and (2.12) for call

options and Equations (2.11) and (2.13) for put options. As we would like to value

the profit and loss at maturity, we need to calibrate the profit earned by the option

seller. The option seller gets option price V as the payment from the option buyer

at the initial time, and after holding it to the maturity the value amount of money

is equal to V (1 + rf )
T . There are also scenarios in this study, both of them based

on a stock with the initial price S0 = 20, the upward movement factor u = 1.1 and

the downward movement factor d = 0.9. The option based on this underlying asset

has a maturity m = 4. Two investors predict the options based on two methods,

in which the CRR investor uses the CRR model to make the prediction with a

constant probability q, while the NPI investor uses the NPI method to predict the

options based on n = 50 historical stock price among them s increased. Then we can

calculated the discount rate for the NPI method, r = s
n
u+ (1− s

n
)d− 1 depending

on s, while the CRR discount rate is rf = qu+(1− q)d−1 = 0.03. Since we assume

that the discount rate is a non-negative value, which leads to no trading action of

s < 25. We study the prices from the NPI method as well as the CRR model.

The expected price pattern of the option is similar to the expected payoff pattern

when the option life period is shorter, e.g. options with the maturity m = 2 in

Figures 2.11 (a) and (b). However, when it comes to long period options, e.g. options
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Figure 2.11: Expected prices and payoffs from the NPI method for European options and
the CRR model in Scenario 1
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with the maturity m = 10 in Figures 2.11 (e) and (f), the difference between expected

prices and expected payoffs is obvious, especially for the one with a great payoff.

Ultimately, the expected price is from the expected payoff divided by the discount

rate. Now we know the influence of discount procedure towards the expected price,

then we would like to see how the discount procedure effects the NPI profit and

loss (P&L) in two different scenarios. In the first scenario p = q = 0.65, then

s ∼ Bin(50, 0.65). As the stock is expected to rise in the future, then the call option

is exercised at maturity while the put option not. Then based on the P&L formulas

with the discount procedure: Equations (2.27) and (2.30) for the call option, and

Equations (2.34) and (2.37) for the put option. We get the expected NPI loss for

the call option, which is,

Ec[L(s)]

=

s1∑
s=0

L(n,m, s : s < s1|V = Vc)

(
n

s

)
qs(1− q)n−s

+
n∑

s=s2

L(n,m, s : s > s2|V = Vc)

(
n

s

)
qs(1− q)n−s

=

s1∑
s=0

m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m

k

)(
n

s

)

×

[
qk+s(1− q)n+m−s−k − (1 + r)−m

(
n+m

s+ k

)−1(
n

s

)
n− s

n− s+m− k
qs(1− q)n−s

]

+
n∑

s=s2

m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m

k

)(
n

s

)

×

[
(1 + r)−m

(
n+m

s+ k

)−1(
n

s

)
qs(1− q)n−s s

s+ k
− qk+s(1− q)n+m−s−k

]
(2.55)
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For the put option, the expected NPI loss is,

Ep[L(s)]

=

s3∑
s=0

L(n,m, s : s ≤ s3|V = Vp)

(
n

s

)
qs(1− q)n−s

+
n∑

s=s4

L(n,m, s : s ≥ s4|V = Vp)

(
n

s

)
qs(1− q)n−s

=

s3∑
s=0

⌊k∗p⌋∑
k=0

(1 + r)−m[Kp − ukdm−kS0]

(
m+ n

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)
×

(
n

s

)
qs(1− q)n−s

−
n∑

s=s4

⌊k∗p⌋∑
k=0

(1 + r)−m[Kp − ukdm−kS0]

(
n+m

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)
×

(
n

s

)
qs(1− q)n−s

(2.56)

We calculated the expected NPI loss with various maturities, m from 1 to 10, to

explain the influence of discount procedure as well as the benefit for further P&L

comparison in the second scenario. In Figure 2.12, we listed graphs of expected

NPI loss with and without the discount procedure for both call and put options.

For the call option, we can see the influence of involving discount procedure is

significant. This is because the call option in this example is exercised, then the

expected NPI loss consists of in both the payoff at maturity and the option price.

Including the discount procedure to some extent weakens the option price part.

Since s ∼ Bin(50, 0.65) and when s ≥ 33, the NPI investor is more likely to buy the

call option, paying the option price and earning the payoff. So apart from the option

price, the NPI investor is expected to have a positive profit at maturity. Therefore,

the disadvantage of NPI prediction in this scenario is insignificant. Whereas the put

option is not exercised at maturity, then all expected NPI loss contains is the put

option price. Therefore, the difference with or without discount procedure is not

apparent.
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Figure 2.12: Expected NPI loss in Scenario 1
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In the second scenario, the real market probability p = 0.85 is different from the

CRR probability assumption q = 0.65, while the NPI method does the prediction

based on the historical data s ∼ Bin(50, 0.85). The underlying asset is still expected

to have a higher value in the future, making for the call option exercise but not for

the put option. To calculate the expected NPI profit, we need to use the discount

version of Equations (2.41) and (2.44) for the call option and Equations (2.48) and

(2.51) for the put option. The specific formula of the expected NPI profit for the

call option is displayed below.

Ec[Pro(p, s)]

=

s5∑
s=0

Pro(n,m, s : s ≤ s5|V = Vc)

(
n

s

)
ps(1− p)n−s

+
n∑

s=s6

Pro(n,m, s : s ≥ s6|V = Vc)

(
n

s

)
ps(1− p)n−s

=

s5∑
s=0

m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m

k

)(
n

s

)

×

[
(1 + r)−mps(1− p)n−s

(
n+m

s+ k

)−1(
n

s

)
n− s

n− s+m− k
− ps+k(1− p)n−s+m−k

]

+
n∑

s=s6

m∑
k=⌈k∗c ⌉

[ukdm−kS0 −Kc]

(
m

k

)(
n

s

)

×

[
ps+k(1− p)n−s+m−k − (1 + r)−mps(1− p)n−s

(
n+m

s+ k

)−1(
n

s

)
s

s+ k

]
(2.57)
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For the put option, the formula of the expected NPI profit is,

Ep[Pro(p, s)]

=

s7∑
s=0

L(n,m, s : s ≤ s7|V = Vp)

(
n

s

)
ps(1− p)n−s

+
n∑

s=s8

Pro(n,m, s : s ≥ s8|V = Vp)

(
n

s

)
ps(1− p)n−s

= −
s7∑
s=0

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0](1 + r)−m

(
m+ n

m

)−1(
s+ k

k

)(
n− s+m− k − 1

m− k

)
×

(
n

s

)
ps(1− p)n−s

+
n∑

s=s8

⌊k∗p⌋∑
k=0

[Kp − ukdm−kS0](1 + r)−m

(
m+ n

m

)−1(
s+ k − 1

k

)(
n− s+m− k

m− k

)
×

(
n

s

)
ps(1− p)n−s

(2.58)

Then we plotted Figure 2.13, the expected NPI profit with and without the

discount procedure. From the plot, we can see that the discount procedure does

not make a lot of difference to the expected NPI profit. For both the call and put

options, the expected NPI profit with the discount procedure has the similar values

and shape to the one without the discount procedure, indicating the NPI investor

can earn some money from this option trade with the CRR investor. The reason that

when m is large, e.g. m = 10, the expected NPI profit with the discount procedure

is higher than that without the discount procedure is that in the discount procedure

we use the risk-free rate to do the calibration of NPI earning as an option seller. In

this case, the risk-free rate is calculated from p, which is the real market probability.

Although the NPI method is based on the historical information s ∼ Bin(50, 0.85),

it cannot entirely follow the market pattern of the market. But after the calibration,

the result is more robust than without the discount procedure leading to a higher

profit.

From the comparison, it is clear that the discount procedure does influence the
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Figure 2.13: Expected NPI profit in Scenario 2
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price prediction. A proper discount procedure can weaken the disadvantage of the

inaccurate prediction from the NPI method when the CRR is right. If we compare

the expected NPI P&L with the discount procedure in Scenario 2 to the results in

Scenario 1, we can see that our conclusion revealed in the performance without the

discount procedure still valid: the NPI method performs better if there are some

wrong assumptions in the CRR model.

2.4 Concluding remarks

The NPI performances comparing to the CRR model performances
Influencing factor Scenario 1:The

CRR model is right
Scenario 2: The

CRR model is wrong
The NPI investor faces
amount of loss trading
with the CRR investor.

The NPI investor
benefits from the trade
with the CRR investor.

Increase the number
of historical data

The loss of the NPI
investor decreases.

The profit of the
NPI investor drops.

Enlarge the difference
between the risk-neutral

probability and the
real market probability

The profit of the NPI
investor increases.

Include an appro-
priate discount rate

The loss of the NPI
investor decreases.

The profit of the NPI
investor increases.

Table 2.3: A summary of the NPI performance results

The NPI method for European option pricing, a way keeping learning from

historical data, relaxes some traditional assumptions, one of the most important ones

is that we do not assume the probability of upward movement to remain constant.

In Section 2.2, we prove that the NPI boundary prices also follow the put-call parity.

As the classic put-call parity only valid in an arbitrage-free market, but our method

generates an interval price indicating the existence of arbitrage opportunity, the

boundary prices put-call parity is reasonable. After setting up the NPI method for

European options, we compared our model with the CRR model. In this analytical

study, two extreme scenarios were investigated. Scenario 1 is the CRR investor
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predicts with the same knowledge as that in the market, meaning the CRR price

is identical to the market price. In this scenario, the NPI investor is not expected

to beat the CRR investor, but with more historical information the NPI investor

performs better. Scenario 2 is the opposite of Scenario 1, in which the CRR investor

made a mistake during prediction. In this scenario, investing in a corresponding

option in the same direction as your prediction is a good move for the NPI investor.

As the forecast from the CRR model gets closer to the truth, the advantages of the

NPI method dwindles. After settling the expected underlying asset return as the

discount rate, we study the NPI method’s performance, that the results show that

an appropriate discount procedure can release the wrong prediction influence when

the CRR model does the perfect job, and do not change the conclusion when the

CRR model uses the false assumption. A tabular summary of the NPI performance

study is listed in Table 2.3.

Some further topics are still interesting to be investigated. The sufficient size

of historical data to support an accurate prediction is not expounded, the necessity

to include all the historical data available in the market. Also, at the start point,

we only involve two traders for the method performance study. The work based on

multiple traders with complex scenarios is also challenging and appealing. Populat-

ing the empirical historical data to the NPI method and studying its performance

need more hard work. Last but not least, the application of the NPI method to

a trinomial model is also attractive, which gives more variability to the underlying

asset price movement. And the application of NPI method to a trinomial model is

different by the order of the possible outcomes from one node.



Chapter 3

NPI for American Option Pricing

After applying the NPI method to the European option pricing, we want to find

out if the NPI method can perform the same as for another type of vanilla options,

the American option, as it does for the European option.

American options giving the right of early exercise are an essential type of op-

tions in the market. Due to the path dependence feature of the American option,

it is difficult to find a closed formula for pricing. The CRR model can be used

for American option pricing, and other scholars extent this model to fit more com-

plicated situations [30]. Boyle [15] set up a binomial tree model for an American

option based on two underlying state variables making the model handle the early

exercise feature of the American option. Amin [2] improved the original CRR model

by adding jump diffusion to fit in the path-dependent options’ evaluation like the

American option, under the assumption of market completeness and the risk-neutral

world. To contain more uncertainty, the CRR model has been converted to some

new versions. Hu and Cao [43] propose a binomial tree model with randomized stock

price movement. Zdenek [77] implemented the fuzzy set theory in the American real

option pricing procedure to embrace more uncertainty and study its completeness

and the non-arbitrage property. However, these models are still under the original

assumptions, like the risk-neutral world and the constant probability of stock price

upward movements, and overlook the information from historical data.

77
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In Chapter 2, we presented a novel European option pricing method based on

Nonparametric Predictive Inference [40]. Instead of using a precise probability for

each step in the binomial tree, we applied NPI and concluded its advantages when

the investor has less specific information about the underlying asset. In this chapter,

we investigate this imprecise statistical method for American options pricing. We

apply the NPI method to the discrete binomial tree model to price American options.

There is no closed form formula for the American option pricing, so a backward

optimization method can be used for the American option pricing based on the CRR

model, and this method is also applicable for the NPI method for the American

option pricing as will be shown in Section 3.1. In Section 3.2, we prove the rational

trading theory, ’Never early exercise an American call option without dividend’, is

not valid according to our method. Then we compare the performance of the NPI

method to the performance of the CRR model in two extreme scenarios using the

same setting as that in Chapter 2. In Section 3.4, we conclude the results and offer

some future study potentials.

3.1 NPI for American option pricing

Due to the early exercise possibility, there is no closed form formula for American

option pricing based on the binomial tree model. In Section 1.1, we define American

option pricing from the best exercise time aspect. Here we give a different but

equivalent definition representing the idea of the backward pricing strategy. Let

ht(x) denote the instant value of the American option at time t, 0 ≤ t ≤ T , given

St = x. Then ht(x) = x−Kc for a call option and ht(x) = Kp − x for a put option.

Vt(x) is the option value at time t ∈ {0, 1, . . . , T − 1} given St = x. The American
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Figure 3.1: The binomial tree based on the NPI method for an American call option

option value at time t is

Vt(x) = max{ht(x), B(t, t+ 1)Vt+1(St+1|St = x)} (3.1)

VT (x) = max{hT (x), 0} (3.2)

Here B(t, t + 1) is the discount factor between times t and t + 1. By recursion,

we obtain the value of the American option at the initial time, V0(x), which is the

predicted price of this American option.

3.1.1 American call option

Figure 3.1 displays the backward optimization pricing procedure. Suppose there

are n historical stock prices available and among them s increased. The call option

value in node i at time t is V i
t . From the tree we can tell than there are T + 1

levels from level 0 to level T and in each level the number of nodes is the level

number plus one, thus t ∈ {0, . . . , T} and i ∈ {1, . . . , t + 1}. We start to eval-

uate the call option at maturity V i
T = max{0, Si

T − Kc} with i ∈ {1, . . . , T + 1}

where Si
T the stock price in case i at maturity T . Rolling back to evaluate this
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call option for each node i from time T − 1 to 0 on the basis of the definition

V i
t = max

{
Si
t −Kc, (1 + r)−1[P i

t V i
t+1 + (1− P i

t )V
i+1
t+1 ]

}
for the upper value and

V i
t = max

{
Si
t −Kc, (1 + r)−1[P i

t V i
t+1 + (1− P i

t )V
i+1
t+1 ]

}
for the lower value, where

P i
t is the upper probability for the node i at time t derived from Equation (1.17),

and P i
t is the lower probability for the node i at time t from Equation (1.16). Si

t

is the underlying asset for node i at time t, and r is the discount rate. Based on

the general formula for the American option pricing, Equations (3.1) and (3.2), the

formulae for each node in the binomial tree based on the backward NPI pricing

method for an American call option, are formulated below.

The maximum buying price of an American call option

V i
t {i=1...t+1}

= max
{
[Si

t −Kc]
+, (1 + r)−1

[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1 )

]}
= max

{
[Si

t −Kc]
+, (1 + r)−1

[
s+ t− i+ 1

n+ t+ 1
V i
t+1 +

n− s+ i

n+ t+ 1
V i+1
t+1

]}
V i
T {i=1...T+1}

= max{0, Si
T −Kc} (3.3)

The minimum selling price of an American call option

V i
t {i=1...t+1} = max

{
[Si

t −Kc]
+, (1 + r)−1

[
P i
tV

i
t+1 + (1− P i

t )V
i+1
t+1

]}
= max

{
[Si

t −Kc]
+, (1 + r)−1

[
s+ t− i+ 2

n+ t+ 1
V i
t+1 +

n− s+ i− 1

n+ t+ 1
V i+1
t+1

]}
V i
T {i=1...T+1} = max{0, Si

T −Kc} (3.4)

Similarly, we can mathematically describe the backward optimization method based

on the NPI method for the American put option as well.

3.1.2 American put option

The binomial tree for the American put option is displayed in Figure 3.2. V i
t

with t ∈ {0, . . . , T} and i ∈ {1, . . . , t+1} is the put option value in case i at time t.

Similar to the call option pricing procedure, we start to evaluate the put option at

maturity V i
T = max{0, Kp − Si

T} with i ∈ {1, . . . , T + 1} and Si
T the stock price in
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Figure 3.2: The binomial tree of the American put option (in the money)

case i at maturity T . To evaluate this put option for each case i from time T−1 to 0,

we use formulas V i
t = max

{
Kp − Si

t , (1 + r)−1[P i
tV

i
t+1 + (1− P i

t )V
i+1
t+1 ]

}
for the up-

per value and V i
t = max

{
Kp − Si

t , (1 + r)−1[P i
tV

i
t+1 + (1− P i

t )V
i+1
t+1 ]

}
for the lower

value, which are derived from Equations (3.1) and (3.2). For upper probabilities,

we have the formula as Equation (1.17) P i
t = s+t−i+2

n+t+1
, and for lower probabilities,

we have the formula as Equation (1.16) P i
t = s+t−i+1

n+t+1
. This leads to the following

results.

The maximum buying price of an American put option

V i
t {i=1...t+1}

= max
{
[Kp − Si

t ]
+, (1 + r)−1

[
P i
tV

i
t+1 + (1− P i

t )V
i+1
t+1

]}
= max

{
[Kp − Si

t ]
+, (1 + r)−1

[
s+ t− i+ 2

n+ t+ 1
V i
t+1 +

n− s+ i− 1

n+ t+ 1
V i+1
t+1

]}
V i
T {i=1...T+1}

= max{0, Kp − Si
T}

(3.5)



3.2. Early exercise of an American option 82

The minimum selling price of an American put option

V i
t {i=1...t+1} = max

{
[Kp − Si

t ]
+, (1 + r)−1

[
P i
tV

i
t+1 + (1− P i

t )V
i+1
t+1

]}
= max

{
[Kp − Si

t ]
+, (1 + r)−1

[
s+ t− i+ 1

n+ t+ 1
V i
t+1 +

n− s+ i

n+ t+ 1
V i+1
t+1

]}
V i
T {i=1...T+1} = max{0, Kp − Si

T}

(3.6)

We have implemented this backward method for American options in the statis-

tics software R in Appendix B.1. The program user inputs to specify the option,

that is stock price S0, upward movement factor u, downward movement factor d,

discount rate r, time steps between initial time and the maturity, strike price K,

number of historical data n, the number of upward movements in history s. Then

the program will ask the type and the trading position of this option, after that a

figure like Figure 3.3 will be generated. At each node, there are two values with

three digits after the decimal (values with fewer decimal digits are exact results after

programming), one outside the parenthesis is the stock price St and the one in the

parenthesis is the option value Vt(St). The result in the parenthesis at the initial

time is the price of this option, and the nodes in oval are the case supposed to be

exercised early.

3.2 Early exercise of an American option

Merton[57] showed that for an American call option without dividends, the op-

tion stopping time is its expiry time, meaning that it is not optimal to exercise an

American call option early. This section will discuss the reason for this phenomenon

and check if it holds for the NPI method.

In the binomial tree, we used the backward optimization method to calculate

the American option price. At each node, instant value ht(St = S) is compared

to the discounted holding value Ht(St = S), and the greater value is taken as the
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Figure 3.3: Example for option pricing in R

value of this node at time t, Vt(St = S) = max{ht(St = S), Ht(St = S)}. The

holding value at time t is equal to the discounted expected value at time t + 1,

Ht(St = S) = B(t, t + 1)Vt+1(St+1|St = S). To start our study of the NPI method,

some examples are presented to help us understand the pricing method heuristically.

3.2.1 Examples

Example 3.2.1

According to the different moneyness of the option, options can be categorized

in three situations as discussed in Section 1.1, in the money, at the money, and out

of the money. In the money options are ones have a positive payoff at the initial

time, for call option the strike price lower than the initial stock price (Kc < S0),

for put options the strike option is higher than the initial stock price (Kp > S0).

At the money means that the decided strike price equals to the initial stock price

(S0 = Kc). Out of the money call options have a higher strike price than the initial

stock price (Kc > S0), while out of the money put options have a lower strike price

than the initial stock price (Kp < S0). In this example, there is an American call

option with maturity T = 2, which is at the money.
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Figure 3.4: The binomial tree of Example 3.2.1

The binomial tree of the stock price and option value at each node Vt(St = S)

(in the parenthesis, maximum buying value on the left and minimum selling value

on the right) are listed in Figure 3.4. A stock with initial price S0 = 20 moves

up by factor u = 1.1 or down by factor d = 0.9. There are 50 historical data

available in the market, and among them, 26 are up, then the upper and lower

probabilities of each movement are calculated based on Equations (1.17) and (1.16)

and displayed in Figure 3.4. According to the criterion of discount rate settlement,

the discount rate in our method is set as the expected return of the stock price. On

the basis that our method has an interval of expected values, there exist an interval

of expected returns. Furthermore, because of the variability of probability at each

time step, the expected return interval at each time step varies. We assume in this

example that the discount rate r is equal to the lower expected return of the stock

price during the period from time 0 to time 1. Thus, examples in this section are

under the assumption that the investor has a lower expectation for the stock price.

Accordingly, the discount rate is equal to r = u s
n+1

+ dn−s+1
n+1

− 1 ≈ 0.002.

Clearly, in this example, only the top path with all upwards movements has a
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Figure 3.5: The binomial tree of Example 3.2.2

positive payoff. Then for this call option referring to the NPI method, it should not

be exercised early, for at each node i ∈ {1, . . . , t+1} of each time step t ∈ {0, . . . , 2}

the instant value ht(S
i
t) is lower than the holding value Ht(S

i
t). There is only one

path, 20 → 22 → 24.2, in the tree is included in the pricing procedure that is shown

as the solid line with positive values in the parenthesis at each node of the path. So

the maximum buying price and minimum selling price are V0 = (1+0.002)−2(24.2−

20)27
52

26
51

≈ 1.107 and V0 = (1 + 0.002)−2(24.2− 20)28
52

27
51

≈ 1.193, respectively, which

are identical to these prices for the corresponding European call option based on the

NPI method.

Example 3.2.2

We aim to price an American call option based on the same underlying asset as

that in Example 3.2.1 as well as the same historical data, but now we consider strike

price Kc = 16. As a result of the lower strike price, this American call option is in

the money at the initial time, and all paths are taken into account for the pricing

procedure. Based on the definition of the American call option, we can check whether
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there is any possibility of prematurely exercise this call option. It turns out that

the lowest branch of the binomial tree from time 1 to time 2, highlighted in the red

square in Figure 3.5, can be exercised early. Since the lower discounted expected

payoff at time 2, which is equal to (1 + 0.002)−1(3.826
52

+ 0.226
52
) ≈ 1.996, is less than

2 the instant payoff at time 1, while the upper discounted expected payoff at time 2,

which is equal to (1+ 0.002)−1(3.827
52
+0.225

52
) ≈ 2.065, is greater than 2, the instant

payoff at time 1. The NPI investor, as the option holder, prefers to exercise this

option early but does not expect the option buyer to exercise this option before its

maturity as the option writer, for the instant payoff is lower than the holding value

at this time. Therefore for the same option, the NPI investor is willing to sell at a

price as a European option but willing to buy it at a higher price as an American

option.

Example 3.2.3

In this example, the American call option is still based on the same underlying

asset as in Examples 3.2.1 and 3.2.2, but with a longer maturity T = 4 and lower

strike price Kc = 13. At time t = 4, when it comes to the last branch in the tree,

both upper and lower discounted expected values, 1.577 and 1.523, are lower than

the instant value 1.58 at time t = 3 shown in the red square. Therefore, in this case,

if the NPI investor is the option holder, it is optimal to exercise this American call

option early, and if the NPI investor is the option writer, the buyer is expected to

exercise the option early. So the option is sold at a higher price.

Similarly, this method can also confirm that for a non-dividend American call

option it is possible to gain more profit when it is exercised prematurely than exer-

cising at maturity.
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Figure 3.6: The binomial tree of Example 3.2.3
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Example 3.2.4

Based on the definition of the American put option Equation (1.4), this at the

money put option based on the same underlying asset as the other examples will

be exercised prematurely in the case of the last branch at time t = 2. For the put

option, based on the definition of put option payoff [Kp−St]
+, the lower stock price

is, the higher instant payoff is. But due to the discount procedure, the holding value

H(St) can be lower than the instant value that is easier to be encountered than a

call option. And in this example for both the buying and selling positions the early

exercise is expected to happen, then as an option writer the NPI investor would

be assigned to this put option early exercise payoff before its maturity so that this

option would be sold at a higher price.

3.2.2 Early exercise of an American call option

After the example study, we know that an American call option can be exercised

early from the NPI perspective. As for the NPI method, there are two bounds, upper
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and lower boundaries. An investor’s trading position will decide which boundary

supposed to be concerned. As an option holder, the investor should focus on the

maximum buying price, while the option seller is supposed to pay attention to

the minimum selling price. Then to study the condition of early exercise, we can

simplify the procedure by only focusing on either the maximum buying price or the

minimum selling price according to two trade positions. As we discussed in Section

1.3, the discount rate in our method can be the expected return of the stock or the

expected return of the option if the market is completed. By assuming the discount

rate is a constant value r, we can set the discount factor at the beginning of the

call option. Firstly, we discuss to exercise an American call option prematurely,

then the NPI investor is supposed to hold an American call option and willing to

buy the underlying asset in the future if there exist some profits. Therefore, only

the lower NPI expected value, lower expected stock price, lower expected option

values, and lower expected return need to be considered. If we set the discount rate

at time t equal to r, then at time t + 1 there will be two different circumstances

of stock lower expected return rt+1, higher than r or lower than r, where rt+1 =

uPt(St) + d(1− Pt(St))− 1 and E(St+1)(1 + rt+1)
−1 = St, for the lower expectation

of the stock at time t+1 should be equal to the stock price at time t times its lower

expected return during this time period. Therefore, the discounted expected stock

price E(St+1)(1+ r)−1 at time t+1 is not always equal to the stock buying price St

at t, while in risk-neutral evaluation we always have E(St+1)(1 + rf )
−1 = St.

Referring to Figure 3.8, there is a stock price Si
t with t ∈ {0, . . . , T} and i ∈

{1, . . . , t+1} at every node in the binomial tree, and we also have option value of each

node V i
t calculated with backward optimization method following the early exercise

condition. To get the early exercise condition for an American call option holder,

we compare the option instant value ht(St = Si
t) to the holding value Ht(St = Si

t)

at time t for each node i. If St − Kc > Ht(St = Si
t), it is optimal to exercise this

call option, otherwise holding it is wiser. Here Ht(St = Si
t) is computed based on
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Figure 3.8: The binomial tree of the underlying asset and its American call option instant
payoffs based on the NPI method

the option value of two nodes at time t+1, Vt+1(St+1 = Si
tu) and Vt+1(St+1 = Si

td).

Therefore, before the comparison we need to consider the exercise condition of two

nodes at time t + 1 ̸= T , which consist of three circumstances: two nodes are

exercised at time t+1, one is exercised while the other is better to be held, and two

nodes are held. For the first circumstance, both nodes at time t+1 are exercised, let

us discuss whether the inequality between the instant value and holding value still

holds or not. Here we use the difference between the discounted the payoff of the

American call option B(t, t+1)Vt+1(St+1|St) = E[St+1 −Kc]
+(1+ r)−1 at t and the

instant value of the American call option h(St+1) = St −Kc to do the comparison.

[E[St+1 −Kc]
+](1 + r)−1 − (St −Kc)

≥ [E(St+1 −Kc)](1 + r)−1 − (St −Kc)

= [E(St+1 −Kc)](1 + r)−1 − (E[St+1](1 + rt+1)
−1 −Kc)

= E[St+1]((1 + r)−1 − (1 + rt+1)
−1)−Kc((1 + r)−1 − 1)

(b)
≥ Kc((1 + r)−1 − (1 + rt+1)

−1 − (1 + r)−1 + 1)

= Kc(1− (1 + rt+1)
−1) > 0 (3.7)



3.2. Early exercise of an American option 91

Here, r is the non-negative discount rate set at the open contract time, and

rt+1 is lower expected return of the stock price at time t + 1. And for all rates we

assume they are positive. This inequality (b) holds as an American call option can

be exercised under the condition St − Kc > 0, which is definitely followed. Since

both stock prices in the one-step binomial tree at time t + 1 follow the conditions,

Stu−Kc > 0 and Std−Kc > 0 with factors u and d movement factors of the stock

price, then St −Kc > 0 is always true. And another condition of (b) that needs to

be followed is (1 + r)−1 − (1 + rt+1)
−1 > 0, meaning rt+1 > r.

Actually rt+1 > r is not the exact condition for preventing NPI American call

option early exercise. We would like to reveal the condition for stopping the NPI

American call option early exercise, and the condition is

[E[St+1 −Kc]
+](1 + r)−1 ≥ E(St+1 −Kc)](1 + r)−1 > (St −Kc)

⇔ E[St+1]−Kc > (St −Kc)(1 + r)

⇔ St(1 + rt+1)−Kc > (St −Kc)(1 + r)

⇔ (1 + rt+1) >
(1 + r)(St −Kc) +Kc

St

⇔ rt+1 > (1− Kc

St

)r (3.8)

⇔ Pt(St) >
(1 + r − d)St − rKc

(u− d)St

(3.9)

We can express the condition for holding this call option at St not only as

rt+1 > (1 − Kc

St
)r but also as a condition on the lower probability at St, Pt(St) >

(1+r−d)St−rKc

(u−d)St
. This is derived due to the relationship between the lower expected

stock return and the lower probability, 1 + rt+1 = uPt(St) + (1− Pt(St))d.

For the circumstance that the option of one node at t+ 1 is optimal to be held

while the other is exercised early, there exist two different situations; the first one

is that the upward node is optimal to be held while the downward node is optimal

to be exercised early. In this situation, the upward node contains the option value,

which is the holding value at time t + 1 represented as Ht+1(Stu), which is greater
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than the instant value at time t+1, Ht+1(Stu) > ht+1(Stu) ⇔ Ht+1(Stu) > Stu−Kc.

The downward node value is the instant value ht(Std) = [Std−Kc]
+. The condition

of this situation now becomes

(1 + r)−1[Pt(St)H1+t(Stu) + (1− Pt(St))[Std−Kc]
+]

≥ (1 + r)−1[Pt(St)(Stu−Kc + a) + (1− Pt(St))(Std−Kc)] > (St −Kc)

⇔ 1 + rt+1 >
(1 + r)(St −Kc) +Kc − Pt(St)a

St

⇔ rt+1 > r(1− Kc

St

)−
Pt(St)a

St

(3.10)

⇔ Pt(St) >
(1 + r − d)St − rKc

(u− d)St + a
(3.11)

where a is the difference between the discounted expected value and instant value

at time t+1 for upward node, a = Ht+1(Stu)−ht+1(Stu) = Ht+1(Stu)− (Stu−Kc).

The value a is a positive value which depends on all future paths related to the node

where St+1 = Stu from time t+ 1 to maturity.

Another possible situation in this circumstance is that the upward node is opti-

mal to be exercised, but the downward node is optimal to be held. In order to find

the condition of holding the option at time t, we compare the discounted expected

value at time t, Ht(St) = (1 + r)−1[Pt(St)(Stu −Kc) + (1 − Pt(St))Ht+1(Std)], and

the instant value at time t, h(St) = St −Kc. This leads to the condition.

(1 + r)−1[Pt(St)(Stu−Kc) + (1− Pt(St))Ht+1(Std)] > (St −Kc)

⇔ (1 + r)−1[Pt(St)(Stu−Kc) + (1− Pt(St))(Std−Kc + b)] > (St −Kc)

⇔ 1 + rt+1 >
(1 + r)(St −Kc) +Kc − (1− Pt(St))b

St

⇔ rt+1 > r(1− Kc

St

)−
(1− Pt(St))b

St

(3.12)

⇔ Pt(St) >
(1 + r − d)St − rKc − b

(u− d)St − b
(3.13)

where b is a positive value equal to the difference between the discounted expected
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value from time t + 2 and the instant value at node St+1 = Std, b = Ht+1(Std) −

ht+1(Std) = Ht+1(Std)− (Std−Kc) with Std−Kc < 0. As if Std−Kc < Ht+1(Std)

then Stu−Kc < Ht+1(Stu) unless Std−Kc < 0.

The last circumstance is pretty clear, because both future nodes at time t + 1

are optimal to be held, surely the node at time t is optimal to be maintained as

well. For circumstances investigated above it is supposed to be held that at time t

the American call option has a positive instant payoff. Otherwise, the investor has

to keep it for future time steps. We formulate this result as a theorem.

Theorem 1

If rt+1 > r, then the American call option should be held.

If an American call option is exercised at time t, then rt+1 < r.

Proof

As (1 − Kc

St
)r > r(1 − Kc

St
) − Pt(St)a

St
and (1 − Kc

St
)r > r(1 − Kc

St
) − (1−Pt(St))b

St
, we

can conclude that if rt+1 > (1 − Kc

St
)r, the call option should be held at time t.

Moreover, the upper boundary of (1− Kc

St
)r is r, then if rt+1 > r, the American call

option should be held. On the contrary, if an American call option is exercised at

time t, we know that rt+1 does not follow the holding condition, at least lower than

the upper boundary of the holding condition r. Thus, if an American call option

is exercised at time t, then rt+1 < r. Note that these conditions in Theorem 1 are

sufficient conditions, but not necessary conditions.

For the American call option selling position, replacing rt+1 in all conditions of

different circumstances, Equations (3.8), (3.10) and (3.12), with rt+1 leads us to the

early exercise conditions.

3.2.3 Early exercise of an American put option

Similarly, the NPI method can also confirm that for a non-dividend American
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Figure 3.9: The binomial tree of the underlying asset and its American put option instant
payoffs based on the NPI method

put option it is possible to gain more profit when it is exercised prematurely than

at maturity. Here the NPI investor’s position is buying a put option and willing to

sell the underlying asset at a higher price in the future. So the lower NPI expected

option value of the put option and the minimum selling stock price should be in

this comparison. As for the call option, we only focus on the one step binomial

tree instead of the whole tree, because of NPI probabilities for each step in the tree

change with the data.

The binomial tree of the American put option is drawn in Figure 3.9, with stock

price Si
t , option value V i

t , t ∈ {0, . . . , T} and i ∈ {1, . . . , t + 1}, at each node and

upper and lower probabilities calculated based on Equations (1.17) and (1.16) for

every one-step path. For the put option, there are three circumstances for the option

of two nodes after stock price movements in the one step tree, the upward node

Vt+1(St+1 = Si
tu) and the downward node Vt+1(St+1 = Si

td): the option for both two

nodes is optimal to be exercised early, one is excised prematurely while the other

one is better to be held, and the option for both nodes are worth to be held. For

the first circumstance, referring to the definition of the put option early exercise, as

long as the discounted expected value at time t, B(t, t + 1)Vt+1(St+1|St) = E[Kp −
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St+1]
+(1+r)−1, is greater than the instant value at time t, h(St) = Kp−St, then it is

optimal to be held. Since the option holder is going to sell the stock at the minimum

selling price at the exercise time, E(Kp−St+1) = Kp−E(St+1) = Kp−St(1+ rt+1).

Here rt+1 is related to the upper NPI probability, rt+1 = Pt(St)u+(1−Pt(St))d−1.

The condition for holding this option is,

E[Kp − St+1]
+(1 + r)−1 ≥ E(Kp − St+1)(1 + r)−1 > Kp − St

⇔ KP − St(1 + rt+1) > (Kp − St)(1 + r)

⇔ 1 + rt+1 <
St(1 + r)−Kpr

St

⇔ rt+1 < (1− Kp

St

)r (3.14)

⇔ Pt(St) <
(1 + r − d)St − rKp

(u− d)St

(3.15)

Kp is the strike price of this American put option. Since (1 − KP

St
)r < 0, unless

the stock does has a minimal expected return, in this circumstance the condition

for holding a put option until the maturity is harder to achieve than holding a call

option until the maturity.

For the second circumstance, for one node the option is exercised at time t + 1

and for the other note is optimal to hold the option. Similar to the American

call option, for this circumstance we have two different situations, the option of

the upward node is exercised early, and the downward one is not, or the other

way around. For the first situation, then the holding value at time t is Ht(St) =

(1+r)−1[Pt(St)[Kp−Stu]
++(1−Pt(St))Ht+1(Std)], where [Kp−Stu]

+ is the instant

value at the upward node, and Ht+1(Std) is the holding value at the downward node.
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Then the comparison is,

(1 + r)−1[Pt(St)[Kp − Stu]
+ + (1− Pt(St))Ht+1(Std)]

> (1 + r)−1[Pt(St)(Kp − Stu) + (1− Pt(St))(Kp − Std+ v)] > Kp − St

⇔ 1 + rt+1 <
St(1 + r)−KP r + (1− Pt(St))v

St

⇔ rt+1 < (1− KP

St

)r +
(1− Pt(St))v

St

(3.16)

⇔ Pt(St) <
(1 + r − d)St − rKp + v

(u− d)St + v
(3.17)

Here v = Ht+1(Std)− ht+1(Std) = Ht+1(Std)− (Kp − Std). If stock price at time t,

St, is the same as in the first circumstance, then it is clear that this condition is not

as strict as that concluded from the first circumstance. Another situation in this

circumstance is that the option of the downward node is optimal to be exercised

early, and the upward one is optimal to be held. The comparison between the

holding value Ht(St) = (1+ r)−1[Pt(St)Ht+1(Stu)+ (1−Pt(St))[Kp−Std]
+] and the

instant value Kp − St.

(1 + r)−1[Pt(St)Ht+1(Stu) + (1− Pt(St))[Kp − Std]
+]

> (1 + r)−1[Pt(St)(Kp − Stu+ w) + (1− Pt(St))(Kp − Std)] > Kp − St

⇔ 1 + rt+1 <
St(1 + r)−KP r + Pt(St)w

St

⇔ rt+1 < (1− KP

St

)r +
Pt(St))w

St

(3.18)

⇔ Pt(St) <
(1 + r − d)St − rKp

(u− d)St − w
(3.19)

where w is a constant positive value, which represents the difference between the

holding value at Stu and the negative instant value, w = Ht+1(Stu) − ht+1(Stu) =

Ht+1(Stu)− (Kp − Stu).

For the last circumstance, when the option for two nodes at time t + 1 are all

optimal to be held, of course at time t we should not do anything towards this option.
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All these circumstances are settled based on the fact that the instant value at time

t is positive. For those Kp − St ≤ 0, there is no doubt that the investor should wait

for further opportunities. For an American put option seller, the conditions can be

formulated by replacing rt+1 with rt+1.

Theorem 2

If rt+1 < (1− Kp

St
)r, then the American put option should be held at time t.

Proof

For an American put option, (1 − Kp

St
)r is the lower boundary of all holding

conditions, (1− Kp

St
)r < (1− Kp

St
)r + (1−Pt(St))v

St
and (1− Kp

St
)r < (1− Kp

St
)r + Pt(St))w

St

with constant positive values w and v. Thus, if the current upper expected return

at time t is greater than (1− Kp

St
)r, then it is optimal to hold this put option till the

next time step. Note that the condition in Theorem 2 is a sufficient condition, but

not a necessary one.

3.3 Comparison of CRR and NPI for American

options

It is interesting to compare the CRR model and the NPI method for American

option pricing. Following the procedure of the comparison for European options in

Section 2.3, the performance study is justified by calculating the profit and loss of

an investor using the NPI method and trading with the only other investor using the

CRR model in two scenarios, the CRR model perfectly right or substantially wrong

about the market. We firstly plot American option prices from the CRR model and

the NPI model with fixed n but varying s.

In Figure 3.10, we study the comparison based on the same underlying asset

(S0 = 20, K = 21, u = 1.1, d = 0.9, q = 0.65, n = 50, m = 4). Here we need

to mention that the CRR interest rate is equal to 0.03, which is calculated from
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Figure 3.10: Comparison between the CRR model and the NPI method
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the CRR model rCRR = qu + (1 − q)d − 1. While for the NPI discount rate is

calculated based on s and n, r = s
n
u + (1 − s

n
)d − 1. In Figure 3.10, for the call

option when s varies from 0 to 50 the NPI maximum buying and minimum selling

prices are getting higher, while the CRR price is a constant value intersecting with

these two NPI prices. The two intersections are around the value nq = 32.5. If s

is lower than the left intersection, then both NPI prices are lower than the CRR

price, and if s is higher than the right intersections, both those prices are higher

than the CRR price. Then for the case when s is in between the two intersections,

the CRR price is in between the NPI prices. For the put option, the pattern of

the NPI prices is opposite to that in the call option graph. The maximum buying

and minimum selling prices go down along with s increasing. There are also two

intersections between the CRR price and the two NPI prices around 32.5. When s

is in the interval of two intersections, the CRR price is in the interval of the NPI

prices. If s is lower than the left intersection value of s the NPI prices are higher

than the CRR price, while if s is higher than the right intersection value of s the

NPI prices are lower than the CRR price. The plot of the put option decreases to 1

instead of 0, because when s is close to n, the optimal exercise time is zero with a

positive payoff equal to 1 in this example.

Since the American option can be early exercise, the expected option price is

different from the corresponding European option, which leads to a different perfor-

mance of the NPI method. As an important factor of the performance study, the

optimal exercise time of the American option named as stopping time is studied in

the following section.

3.3.1 Stopping times

Before the profit and loss calculation, it is necessary to study the different stop-

ping times, the exercise times, of these two methods. Since the profit and loss

contain two parts. One is from the price, and the other part is from the payoff.
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However, different exercise times give us different option payoffs, for the stock price

at the exercise time changes with the time. Then we would like to investigate the

stopping times of both the NPI and the CRR price. In order to make the compar-

ison, there are some values needed to be inputted: initial stock price S0, upward

movement factor u, downward movement factor d, predictive future time steps m,

the constant probability q in the CRR model, strike price K, option type: the call

or put option, and option trading position: buying or selling. The detailed steps of

this simulation are listed below:

1. Simulate N paths of stock price movements. To do that, the indicator of

upward movement I it (i∈{1...N},t∈{1...m}) is needed.

– For the NPI method, based on the historical data, we generate the indi-

cator of upward movement

I it (i∈{1...N},t∈{1...m}) =

{ 1 upward movement

0 downward movement

I it (i∈{1...N},t∈{1...m}) ∼ Bin(1, p = s+θt
n+t

) for buying the stock and

I it (i∈{1...N},t∈{1...m}) ∼ Bin(1, p = s+θt+1
n+t

) for selling the stock, where θt is

the cumulated number of I it from time zero to time t.

– In terms of the CRR model I it (i∈{1...N},t∈{1...m}) ∼ Bin(1, q).

– The stock price at each step is Si
t = Si

t−1u
Iitd(1−Iit) with Si

0 = S0.

2. Calculate the instant value of each step, ht = Si
t − Kc for call option and

ht = Kp − Si
t for put option. For the CRR model there is only one stock

price in this calculation. Since there are two prices generated from the NPI

method, the stock price in this calculation is chosen according to the input of

the trading position. Si
t = Si

t−1u
Iitd(1−Iit), for buying a call option and selling

a put option I it (i∈{1...N},t∈{1...m}) ∼ Bin(1, p = s+θt
n+t

), for selling a call option

and buying a put option I it (i∈{1...N},t∈{1...m}) ∼ Bin(1, p = s+θt+1
n+t

).
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3. Calculate the expected holding value of the option at time t, which is the

discounted expected option value at time t + 1 based on the NPI backward

pricing method for an American option. As the option value at t + 1 is the

maximum of the instant value ht+1 and the expected holding value Ht+1, the

expected holding value at t is Ht = B(t, t+1)max{ht+1, Ht+1}, where B(t, t+

1) is the discount factor from t to t+ 1.

4. Compare the instant value to the holding value from the initial time, and stop

at the first time τ when the instant value is greater than the holding value,

then τ is the optimal time for exercise.

In this simulation, because we want to compare the stopping time between the

CRR model and the NPI method, we study the same American option based on

the same underlying asset. With the same information towards both methods, s
n

is equal to q. The discount rate is the expected stock return r = rCRR. Here we

try to explain the stopping time comparison between the CRR model and the NPI

method in the light of examples. According to Theorem 1, rt+1 > r is the condition

to hold the option. To see the early exercise call option based on the NPI prediction,

specific call options with rt+1 disobeyed Theorem 1 are studied in the examples. The

first example is buying an in the money American call option with parameters as

Kc = 13 and T = 4, on the basis of an underlying stock, S0 = 20, u = 1.1, d = 0.9,

q = s
n
= 0.52, s = 26 and n = 50.

Figure 3.11 clearly shows us for the NPI method the optimal exercise time can

be time 1, 3 or 4 depending on different paths of the underlying stock price, while

for the CRR model, this call option is optimal to be exercised at maturity as it

claimed in the rational trading theory. In the 20000 simulations of the NPI method,

9667 times stop at time 1, 2396 times stop at time 3, and 7937 times stop at time

4. The reason that time 2 is skipped is clearly shown in the binomial tree. As we

can see from Figure 3.12, this American call option has a higher instant value than

its corresponding holding at time 1, 2 and 3. However, if it attempts to reach early
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Figure 3.11: Stopping time from both the CRR model and the NPI method (20000 times
simulation)

Figure 3.12: Binomial tree plot for the NPI American call option

exercise node at time 2, it is supposed to encounter the early exercise node at time 1.

In this circumstance, the investor will choose to exercise at time 1 rather than time

2. We also calculate the average stopping time for the NPI method in this example,
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Method
Time 0 1 2 3 4 5

NPI 0 0 3214 3877 0 12606
CRR 0 0 3214 3822 0 12964

Table 3.1: Stopping time from both CRR and NPI method (20000 times simulation)

Figure 3.13: Binomial tree plot for the NPI American put option

which is 2.40605. Regarding to selling the same American call option, since the

probability of upward movement for each time step is higher than the probability

for buying this option, we expect the average stopping time for the NPI method

to be greater than the time of buying the call option, which is shown by the result

from the 20000 times simulation of selling a call option, the average stopping time

is 3.89335.

An example of the put option comparison is also interesting. This time we choose

to study the stopping time of selling an American put option. In order to make sure

that the early exercise of the American put option happens, in this example we price

a put option with the inputs as S0 = Kp = 20, u = 1.1, d = 0.9, m = 5, n = 500

and q = s
n
= 0.6. From Table 3.1, we can see that for both the CRR and the NPI

methods this American put option is optimal to be exercised before the maturity

under some circumstances, and the stopping time is either 2, 3 or 5. However, the



3.3. Comparison of CRR and NPI for American options 104

Figure 3.14: Binomial tree plot for the CRR American put option

NPI stopping time is more at time 3 and less at time 5 than the CRR model, and

both methods have the same times of stopping time 2. As shown in Figures 3.13 and

3.14, the early exercise node are the same for both methods, while the option price

from the NPI method is higher than that from the CRR method. The NPI method

keeps learning from the data, then it assigns more probability to the path which has

a lower stock price with a higher payoff for the put option. Thus, when it comes

to the simulation, the NPI method would have a higher probability to encounter

the early exercise case, and our results support this. The average stopping time of

the CRR model is 4.1357, whereas the average stopping time of the NPI method is

4.1302. This leading to a higher NPI option price 1.133 than the CRR option price

1.126. We also simulate the buying position’s average stopping time, which is equal

to 4.1359.

In order to see the influence of the stopping time towards the price with varying

moneyness between the two methods, we also plot the differences of average stopping

time and option prices for the two methods based on different moneyness character,

in the money, at the money and out of the money, in Figures 3.15 and 3.17. In this

simulation, the information of the stock is S0 = 20, u = 1.1 and d = 0.9. As we use
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(a) n = 50 q = 0.52(buy)
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(b) n = 50, q = 0.52 (sell)
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(c) n = 50, q = 0.7 (buy)
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(d) n = 50, q = 0.7 (sell)
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(e) n = 50, q = 0.9 (buy)
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(f) n = 50, q = 0.9 (sell)

Figure 3.15: Differences of stopping times and prices between the two methods (Call
option)
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(a) CRR call option price with K = 27

(b) NPI maximum buying price of a call option with K = 27

Figure 3.16: Binomial trees of specific cases

the predictive value from the CRR model as the benchmark, we use the expected

stock price return from the CRR model as the discount rate r = rCRR. First, we

assume the historical data is n = 50, and the proportion of increasing prices is s
n
= q.

The American options in this simulation are the ones with five future time steps.

In this simulation, we vary the strike price from 0 to 40, and for each strike price,

we run 10000 stock paths to calculate the average stopping time. Then we compare

two methods by calculating the differences in the average stopping time and option

prices.

As acknowledged, the CRR model always follows the rational trading theory

”Never early exercise an American call option”, then we know that all American

call options are held until the maturity based on the CRR model, with 5 as the
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average stopping time in this simulation. We can conclude from Figure 3.15 that

for call options, when the call option is deep in the money 0 < Kc << S0, the NPI

method will predict this call option to be early exercised, no matter buying or selling

position. As the strike price getting larger, at some point, the call option is expected

to be exercised at maturity upon both methods. Here, the option prices from the

two methods are different, while the average stopping time is the same. But if the

strike price gets too large, this option is predicted to be exercised in both methods,

so both the differences of average stopping time and option prices are zero. The

maximum buying price is always lower than or equal to the CRR price for in the

money and at the money call options, but it can be higher than the CRR option

when it is out of the money. For example, in the case q is equal to 0.52 and K is 27,

Figure 3.16 shows that because of the large strike price, the only stock path holding a

positive payoff is the first path. The NPI method adjusts the probability along with

the data. Then as predictive future time steps get longer, the probability of upwards

movements gets higher, making the expectation of the option payoff greater than

the expected option payoff from the CRR model. After the discount procedure, the

NPI has a higher option price than that from the CRR model. When the call option

is deep out of the money, the call option has a zero payoff, so the costs from the two

methods equal zero. However, due to different option trading positions, we can see

from Figure 3.15 that a seller who uses the NPI method would expect the same call

option to be held longer than as a call option buyer. As the NPI call option seller,

the upper probability of each upwards movement is used, which makes it easier to

reach the criteria to be held for NPI call options. Then we can see that the earliest

average stopping time of selling a deep in the money option S0 >> Kc is around

time 4.2 while the one of buying the same call option is time 0. The circumstance

for selling this call option with same option price from both methods is when this

call option is out of the money with zero payoff, then in this circumstance, both

the CRR model and the NPI method will generate a zero option price. Whereas,
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the situation that this call option is expected to be early exercised, the difference

in the prices is greater than that without early exercise but with none zero option

price. Conclusively, the disagreement of option prices are raised by two parts, one

is the different probability in the two methods, and the other part is the different

stopping time. As we are varying q from 0.52 to 0.7 till 0.9, the early exercise case

is getting harder to be achieved, only happening to the call options really deep in

the money. The differences of prices also get smaller with larger q, due to larger q

leads to a more substantial s. In terms of each predictive time step, the variability

of NPI probability is lower comparing to small s.

For the put option, from Figure 3.17, as it is also possible that the put option to

be predicted as the early exercise option in the CRR model, the patterns of stopping

time and price differences are different from that of the call option. Generally, for

both seller and buyer, deep in the money and out of the money put options have

the same option prices and stopping time on the basis of the two methods, but the

reasons are different. Deep out of the money put options are with a zero payoff

leading to a zero option price, while deep in the money put options are expected

to be exercised at the initial time, with an option price Kp − S0. If a put option

is at the money, both patterns of different stopping time and prices fluctuate. To

illustrate the comparison detailedly, let us focus on the case of buying the option

with q = 0.52. In this case, there are two apparent fluctuations of stopping time;

one is that strike price is around 18, the NPI stopping time is slightly later than the

CRR stopping time. The other fluctuation dramatically happens when the strike

price is 26, which the NPI buying put option is expected to be exercised at two-

time steps earlier. We can find the reason in their corresponding binomial trees in

Figures 3.18 and 3.19. Figures 3.18 (a) and (b) are the binomial trees of buying

the same put option with K = 18 based on the CRR model and the NPI method,

respectively. The stock price becomes either 14.58 at time 3 or 16.038 at time 4

causing an early exercise situation grounded on both pricing procedures. However,
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(a) n = 50, q = 0.52 (buy)
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(b) n = 50, q = 0.52 (sell)
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(c) n = 50, q = 0.7 (buy)
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(d) n = 50, q = 0.7 (sell)
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(e) n = 50, q = 0.9 (buy)
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(f) n = 50, q = 0.9 (sell)

Figure 3.17: Differences of stopping time and prices between the two methods (Put option)
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(a) CRR put option price with K = 18

(b) NPI maximum buying price of a put option price with K = 18

Figure 3.18: Binomial trees of specific cases
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(a) CRR put option price with K = 26

(b) NPI maximum buying price of a put option price with K = 26

Figure 3.19: Binomial trees of specific cases

to price the NPI maximum buying price, an upper probability is assigned to the path

with a higher stock price in each step binomial tree, so it is easier to reach 16.038 at

time 4 based on the NPI method. Thus, the average NPI stop time will be slightly

later but no more than one-time difference compared to the CRR results, for early

exercise moments in the binomial tree is the same in both binomial trees. The story

is different for buying a put option with K = 26. From Figures 3.19 (a) and (b) we

can see that the early exercise moments in the binomial tree are different for these

two methods. In the CRR model, there are three early exercise situations, S1 = 18.8

at time 1, S2 = 19.8 at time 2 and S3 = 21.78 at time 3, while the NPI method

predicts the same buying put option to be exercised at the initial time. The average

stopping time is quite different between the two methods around two-time steps.

From the aspect of option price differences, under the assumption s
n
= q, along with
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large q, the relevant difference between the probabilities at each time does not vary

a lot at each time step compared to a smaller q. Thus, the option payoff binomial

tree for both methods verge to be similar. For example, we plot the option binomial

trees with K = 26 in two different probabilities q = 0.7 and q = 0.9 in Figure 3.20.

As we discussed before, in the case of q = 0.52, the difference between two methods

predictions holds the largest value for the option with K = 26, while Figure 3.20

shows as q increases binomial trees of the two methods for this K = 26 put option

are looking to resemblance exercised early at the initial time. In the light of put

option holding or exercise conditions, intuitively it is not hard to understand, large q

is barely possible to fit the criteria for holding the option. As long as early exercise

happened, the current option values for the two option methods are the same at

that time. As more nodes holding the early exercise situation, the binomial trees of

two methods are similar, leading to smaller differences of average stopping time and

prices.

The next simulation leads us to the study of the amount of historical data n

influences. This time we assume n = 252, the number of trading days in one

calendar year, other than this, all other inputs are the same as that in the last

simulation shown in Figures 3.15 and 3.17. The simulation outcomes are listed in

Figures 3.21 and 3.22. In terms of call options, we are told from the figure that it is

harder to encounter the early exercise situation for different moneyness options with

larger n, only when this call option is deep in the money, Kc << S0. The reason

is for larger n, the variability of the probability in each time step is lower, which

Pt =
s+t−i+2

n+t
≈ q and Pt =

s+t−i+1
n+t

≈ q with i ∈ {1 . . . t+1} and t ∈ {0 . . . T −1} are

true, then only the circumstance that the strike price is really lower than the initial

stock price will trigger the early exercise. It is also visible that for the situation of

options with the same average stopping time predicted to be exercised at maturity

from two methods, the option price differences are smaller than that with a small n.

The reason is that a larger n narrows down the gap between the maximum buying
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(a) CRR put option price with K = 26 q = 0.7

(b) NPI maximum buying price of a put option with K = 26 q = 0.7

(c) CRR put option price with K = 26 q = 0.9

(d) NPI maximum buying price of a put option with K = 26 q = 0.9

Figure 3.20: Binomial trees of specific cases to compare q influences
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(a) Call with n = 252, q = 0.52 (buy and sell)
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(b) Call with n = 252, q = 0.7 (buy and sell)
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(c) Call with n = 252, q = 0.9 (buy and sell)

Figure 3.21: Differences of stopping time and prices between the two methods
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(a) Put with n = 252, q = 0.52 (buy and sell)
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(b) Put with n = 252, q = 0.7 (buy and sell)
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(c) Put with n = 252, q = 0.9 (buy and sell)

Figure 3.22: Differences of stopping time and prices between the two methods
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price and the minimum selling price and makes the outcome closer to the CRR

result. s
n
= q, the CRR price locates in between the maximum buying price and

the minimum selling price, then the smaller the gap of two boundary prices is the

smaller the differences between prices for two methods are. For put options, the

fluctuation also happens when options are around at the money shown in Figure

3.22. However, the highest fluctuation of average stopping time differences is less

than one-time step, meaning the larger n makes the binomial trees’ exercise moments

from the two methods similar to each other. Furthermore, the larger n gives a resist

effect of varying q to both call and put options. It is easier to understand that larger

n makes less diversity between the two methods when the assumption is s
n
= q, then

surely the pattern of differences from these two methods is supposed to be smoother

and less fluctuated.

All simulation results in this section show that the stopping time influences on

the prediction of option price for both two methods. Different stopping time based

on the CRR model and the NPI method enhances the differences of the outcomes

from these two methods. The effect of the historical data is also considered, finding

that sufficient historical data can ease the influence of the stopping time on the

prediction from two methods. Thus, when the performance of the NPI method is

investigated, the impact of the stopping time needs to be considered.

3.3.2 Profit and loss

In this section, we investigate the performance of the NPI method by calculating

the profit and loss in a circumstance that an investor using the NPI method trades

with an investor using the CRR model. Inspired by the scenarios in European option

study in Chapter 2, we assume:

1. There are only two investors in the market; one uses the CRR model while

the other one uses the NPI method.

2. The trade is triggered if the CRR price is higher than or equal to the minimum



3.3. Comparison of CRR and NPI for American options 117

selling price or lower than or equal to the maximum buying price from the NPI

method. And the trading price is always the NPI price, because we want to know

the worse situation that the NPI investor can encounter.

We study the profit and loss (P&L) in two extreme scenarios: one is that the

CRR model correctly predicts what happens to the future market, while the other is

based on the CRR investor uses the wrong assumption about the market. According

to the paths of stock price simulated following the steps shown in Section 3.3.1 as

well as the option prices from two methods, we get the NPI profit and loss for each

path based on different scenarios. More details of the calculations are presented

below:

Scenario 1: The CRR assumptions are correct

In the market, there is a real probability of upward movement p, and in this

scenario, the CRR assumed upward movement probability q is equal to p. When

the NPI maximum buying price is higher than or equal to the CRR price, V0 ≥

V CRR
0 , the NPI investor will buy this American call or put option at this maximum

buying price V0. At the stopping time, the NPI investor will get the option payoff

calculated based on the CRR model, V CRR
τ = max

q
{0, ST −Kc} for the call option,

because in the CRR model an American call option will never be early exercise, and

V CRR
τ = max

q
{0, Kp − Sτ} for the put option. Due to different stopping time, a risk-

free time value from τ to maturity T is used to calibrate the payoff, which means

we assume the payoff from an early exercise option will be invested in a risk-free

product until the maturity. Then for a call option, the profit and loss of the NPI

investor is,

P&Lc = V CRR
τ (1 + rf )

T−τ − V0 = max
q

{0, ST −Kc} − V0 (3.20)

And for a put option, the profit and loss of the NPI investor is,

P&Lp = V CRR
τ (1 + rf )

T−τ − V0 = max
q

{0, Kp − Sτ} (1 + rf )
T−τ − V0 (3.21)
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If the CRR price falls in the interval of NPI prices, V0 < V CRR
0 < V0, then there is

no trade. The NPI investor would like to sell the American option if the CRR price

is higher than or equal to the minimum selling price V CRR
0 ≥ V0. The option price

V0 is the profit and will be invested in a risk-free product under our assumption.

However, the loss of the NPI investor, V CRR
τ = max

q
{0, ST −Kc} for the call option

and V CRR
τ = max

q
{0, Kp−Sτ} for the put option, occurs when this option is exercised.

Then for a call option, the profit and loss formula is,

P&Lc = V0(1 + rf )
T − V CRR

τ = V0(1 + rf )
T −max

q
{0, ST −Kc} (3.22)

For a put option, the profit and loss formula is,

P&Lp = V0(1 + rf )
T − V CRR

τ = V0(1 + rf )
T −max

q
{0, Kp − Sτ} (3.23)

Scenario 2: the CRR assumptions are wrong

For this scenario, the CRR assumptions are wrong, which means q ̸= p. As

an option buyer, the NPI investor will buy this option when the CRR price is

lower than or equal to the maximum buying price and exercise it at the optimal

stopping time τ . However, as the CRR assumptions are wrong, meaning instead

of q the probability of stock price upward movement is p, the NPI investor will get

the payoff as V p
τ = max

p
{0, Sp

T − Kc} for the call option at the exercise time and

V p
τ = max

p
{0, Kp − Sp

τ} for the put option. Here Sp
τ is simulated follows the CRR

simulation steps, so actually, V p
τ is the option payoff calculated from the CRR model

with probability p instead of q, and we assume this value as a real compensation of

the option exercise from the market in this scenario. For time value calibration, we

assume both the early exercise payoff and the earned option price will be invested

in the risk-free product until the maturity. So for a call option, the NPI profit and
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loss formula is

P&Lc = V p
τ (1 + rf )

T−τ − V0 = max
p

{0, Sp
T −Kc} − V0 (3.24)

and for a put option

P&Lp = V p
τ (1 + rf )

T−τ − V0 = max
p

{0, Kp − Sp
τ}(1 + rf )

T−τ − V0 (3.25)

If V0 < V CRR
0 < V0, there is no transaction between the NPI investor and the

CRR investor. When the CRR price is higher than or equal to the minimum selling

price, V CRR
0 ≥ V0, the NPI investor prefers to sell this option at the minimum selling

price and save it in a risk-free account. When the CRR investor exercise this option,

the NPI investor will pay the option payoff V p
τ = max

p
{0, Sp

T −Kc} for the call option

and V p
τ = max

p
{0, Kp − Sp

τ} for the put option. Then the NPI profit and loss for a

call option can be formulated.

P&Lc = V0(1 + rf )
T − V p

τ = V0(1 + rf )
T −max

p
{0, Sp

T −Kc} (3.26)

And the formula of the NPI P&L for a put option is,

P&Lp = V0(1 + rf )
T − V p

τ = V0(1 + rf )
T −max

p
{0, Kp − Sp

τ} (3.27)

Example 3.3.1

In this example, we calculate the profit or loss of the NPI investor trading with

the CRR investor in Scenario 1 and Scenario 2. By investigating the NPI profit

and loss in these two scenarios, we study the performance of the NPI method for

American option pricing.
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(c) NPI P&L for buying call option
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(d) NPI P&L for selling call option
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(e) NPI P&L for buying put option
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(f) NPI P&L for selling put option

Figure 3.23: NPI profit and loss for Example 3.3.1 in Scenario 1 (q = 0.5, n = 252, p = 0.8)
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We randomize s according to two different scenarios. As s represents the number

of increased prices in the historical data, s follows the binomial distribution. Two

scenarios are distinguished by the different binomial distributions of s, which in the

first scenario s ∼ Bin(n, q) whereas in the second scenario s ∼ Bin(n, p). Based on

each randomized s, an average of profit and loss for the NPI investor is generated,

which is the average value from N paths profit and loss. For our simulation, we

randomly generate 1000 s values, and for each s, N = 10000 stock price paths are

simulated to be used as underlying asset prices. In our first example, Scenario 1

follows s ∼ Bin(252, 0.5) with q = p = 0.5, and Scenario 2 follows s ∼ Bin(252, 0.8)

with q = 0.5 but p = 0.8. The underlying asset is still the same asset as in the

other examples in Chapter 3, with S0 = 20, u = 1.1 and d = 0.9. We decide to

investigate in the at the money options by simulation, K = S0 = 20. According to

the stopping time study, we know that for the put option it has the most different

result from two methods when it is at the money. So we choose an at the money

option as our study example. The option is an American option with T = 5 and

discount rate r = qu + (1 − q)d − 1 for the CRR price and r = s
n
u + (1 − s

n
)d − 1

for NPI prices. In this example, we assume the interest rate that investment of NPI

investor before the maturity in the risk-free market is 0.002. For an NPI investor,

buying the call option or selling the put option in this example is a wise choice,

because the expectation of the stock price is positive leading to a positive expected

payoff for the call option and none expected payoff for the put option. It does not

mean other trading position would not give the investor a positive payoff, but these

two trading actions are safer than others. We calculate the average P&L for each

randomized s, all outcomes are demonstrated as Figures 3.23 and 3.24.

Figures 3.23 (a) and (b) list the CRR price, the maximum buying price and the

minimum selling price with varying s in Scenario 1. Subfigure (c), (d), (e) and (f) are

the average NPI profit and loss for each randomized s in different trading positions

and scenarios. This four subfigures in Figure 3.23 can tell us that in Scenario 1,
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the NPI investor faces a high chance to lose the money in the option trade. For a

call option, a longing position is possible to lead to a loss, because the NPI investor

is willing to buy this option with a higher price, which depending on the value of

s, but the investor can only get the payoff at maturity upon the CRR model with

q. The payoff is lower than the maximum buying price leading to a loss, and the

NPI loses the chance to invest the payoff into another market, because he cannot

get the payment before the maturity. Another possible situation for longing a call

option earns no profit or loss, as s is small, making either the CRR price higher than

the NPI maximum buying price or the discount rate negative, both two situations

prevent the investor from buying this call option. Selling this call option leads to

no profit or loss, due to that s is either too small causing a negative discount rate

or too large making the CRR price lower than the minimum selling price. Then

neither situation triggers the selling this call option action.

Figures 3.23 (e) and (f) show that selling a put option is not a profitable invest-

ment as well, and buying this put option is meaningless. For this put option buyer,

when s is small, the discount rate is negative, while when s is large enough for a

positive discount rate, but the CRR price is higher than the maximum buying price.

According to the second graph in Figure 3.23 (b), when s is large the NPI investor

is in this game, meaning the NPI investor sells the put option at a lower price than

the CRR price and invests the price in a deposit account with a low risk-free rate.

However, from the CRR model the put option is possible exercised by the option

buyer, and when this situation happens, the chance that the deposit money with

risk-free interest cannot cover the payoff is quite high. So the NPI investor will lose

an amount of money at the most time in the put option exercise situation, except

when the selling price is equal or slightly lower than the CRR price, and this situa-

tion is infrequent, and profit is very little. The other time, the NPI investor is not

in the game, when the CRR price is lower than the maximum selling price, or the

small s results in a negative discount rate.
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(c) NPI P&L for buying call option
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(d) NPI P&L for selling call option
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(e) NPI P&L for buying put option
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(f) NPI P&L for selling put option

Figure 3.24: NPI profit and loss for Example 3.3.1 in Scenario 2 (q = 0.5, n = 252, p = 0.8)
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In terms of Scenario 2, the trading environment gets better for the NPI investor.

Even though the NPI investor cannot trade with the CRR investor, selling a call

option or buying a put option as in Scenario 1, the reason is different. In this

example n is large enough and s ∼ Bin(252, 0.8), then E(s) = 252 × 0.8 ≈ 202

that is the randomized s expectation and it is the main reason for the absent of

selling call and buying put option trade. However, the absence of this two trading

position is a good trade movement for the NPI investor, because now the real market

probability is 0.8 meaning that the underlying asset price is expected to rise, then

neither selling the call option nor buying the put option is a wise trade. The NPI

investor gets more involved in the game as a call option buyer and a put option

seller. Discussing the results shown in Figures 3.24 (c) and (f) along with the prices

comparison in Figures 3.24 (a) and (b) reveal that as a call option buyer, the NPI

investor buys the call option at an equal or higher price than the CRR investor

but gets a higher payoff calculated based on real market probability p, meaning the

CRR price undervalues this call option. At maturity, the NPI investor will get a

payoff that is sufficient to cover the price paid. As a put option seller, although the

NPI investor sells the put option at a lower price than the CRR price, due to the

wrong assumption of p in the CRR model, the payoff the NPI investor needs to pay

to the option buyer and the probability of the exercised put option are lower than

the CRR prediction. Therefore, the NPI investor either gains some profit when this

put option is not exercised or pays less amount of payoff than that in Scenario 1.

Generally, in this example, the NPI model performs better than the CRR model in

Scenario 2. Owing to the q we set in this example is equal to 0.5, the limitation

holding a zero discount rate for the CRR model, we would like to investigate a more

general case.
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Example 3.3.2

In Scenario 1, as we can see from Figure 3.25, the NPI investor is involved in

all four trading actions in this scenario, which are buying and selling both the call

and put options. The call option is studied first. Since p = q = 0.7, randomized s

the expectation of it is 176. As long as randomized s makes the maximum buying

price higher than the CRR price, the trade of buying a call option is triggered. As

acknowledged, the CRR call option will never be early exercised, so the NPI investor

pays a higher or same price and gets the CRR payoff at maturity. In the Figure 3.25

(c), it shows that the NPI investor can earn some profit from buying the call option,

meaning all the payoff can cover the price paid. But due to the sufficient number of

n in the simulation, this result is not comprehensive. It is possible to encounter a

negative value of profit and loss when s is very large, even though this situation is

rare.

For selling call options, when s makes the minimum buying price lower than

the CRR price, and it is higher than 126, making sure a non-negative discount

rate for the NPI method, there is a trade of selling the call option. The NPI

investor sells a call option at a lower or equal price to the CRR price and saves

this money into the bank account until the maturity paying to the CRR investor

if the call option is exercised at maturity. From Figure 3.25 (d), it is obvious that

the average NPI P&L for each randomized s is negative, and there is a gap in the

loss graph. To explain this gap, we need to tease out the trading procedure of

NPI investor trading with the CRR investor at the CRR price, since all other cases

cause a higher loss than the bound of the gap. In this trade, with V0 = V CRR
0 ,

the NPI investor sells this call option and puts the money V0 = V CRR
0 into the

bank account earning the profit from it as V CRR
0 × 1.0025 = 4.0038. However,

the NPI investor needs to pay the CRR investor at maturity, for the exercised

call option asks a payoff V CRR
0 × 1.045 = 4.8228, where the discount rate is r =

0.7 × 1.1 + 0.3 × 0.9 − 1 = 0.04. Then the minimum loss for the NPI call option
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(c) NPI P&L for buying call option
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(d) NPI P&L for selling call option
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(e) NPI P&L for buying put option
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(f) NPI P&L for selling put option

Figure 3.25: NPI profit and loss for Example 3.3.2 in Scenario 1 (q = 0.7, n = 252, p = 0.8)
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seller is L = V CRR
0 × 1.045 − V CRR

0 × 1.0025 = 0.8190.

The NPI investor will face a profit or a loss for buying a put option. As long as

randomized s lower than or equal to the intersection between the maximum buying

price and the CRR price, and it is higher than 126, there is the action of buying

the put option. If the put option is purchased at the highest price when s = 126,

and the buyer gets the CRR payoff eventually that is not enough to cover the cost.

For increasing s, the buying price gets lower. When the payoff acquired by the NPI

investor is higher than the price paid, the NPI investor has a profit. Figure 3.25

(f) for selling a put option looks similar to the one for selling a call option, with a

smaller variety due to the lower CRR price and NPI minimum selling price. When

randomized s leads a lower or equal minimum selling price than the CRR price,

the NPI investor sells the put option saving the price in the bank account, and at

maturity, it is possible to face amount of payment to the CRR buyer, when this put

option is exercised. As the stock price is expected to rise, the exercise of the put

option is hard to take place. However, because the CRR investor is using the right

probability, the NPI investor sells the put option at an undervalued price, so the

payment occurs in some cases.

In Scenario 2, consider the values p = 0.8, q = 0.7, so we simulate s ∼

Bin(252, 0.8) with E(s) = 252 × 0.8 = 202. According to the P&L graphs in

Figure 3.26, we can be told that in this scenario the NPI investor only plays a role

in buying the call option and selling the put option, which is two safe trading po-

sitions. For buying the call option, although the NPI investor is paying a higher

price than that in Scenario 1, the investor can also get a higher payoff at maturity

leading to a positive and higher profit than in Scenario 1. However, from the graph

of selling a call option, we can see that there is no profit or loss because in this

simulation we randomize 1000 s ∼ Bin(252, 0.8). The expectation of s is 202, with

which value that all actions of buying the call option occur. As n is large enough

to make sure s never leading to a lower minimum selling price than the CRR price,
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(c) NPI P&L for buying call option

0 200 400 600 800 1000

1
.0

0
.0

0
.5

1
.0

times of randomnizing s

a
v
e
ra

g
e
 N

P
I 
p
ro

fi
t 
a
n
d
 l
o
s
s

timesrun

-

(d) NPI P&L for selling call option
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(e) NPI P&L for buying put option
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(f) NPI P&L for selling put option

Figure 3.26: NPI profit and loss for Example 3.3.2 in Scenario 2 (q = 0.7, n = 252, p = 0.8)
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selling the call option is never going to happen in this simulation. It does not mean

selling a call option will not take place in this scenario. When n is not large enough,

it can be the case, but it is still a scarce circumstance. We discuss this situation

further in the next example. The same situation happens to the case of buying a

put option. In our simulation, we cannot observe the case of buying a put option in

Figure 3.26 (e), because in this simulation n is large enough to keep the randomized

s from being too small to encounter this action. All s for selling a put option causes

a successful action with either a profit or loss shown in Figure 3.26 (f). The real

market will have a lower payoff for the put option, while the CRR model overvalues

it. As the minimum selling price is close to the CRR price, even though the NPI

investor sells the put option at a lower or comparable price, the payoff is lower than

the CRR expectation, leading to a real profit. As s gets larger, the minimum selling

price gets smaller. The option price gained from selling the option and its interests

from the risk-free investment cannot cover the payoff at the exercise time. Then

there exists a loss but lower than what happened in Scenario 1.

All in all, the NPI method performs better in Scenario 2 than in Scenario 1 in

this simulation. First, it keeps the NPI investor away from the less safe trading

action, selling the call option and buying the put option. And according to the P&L

result of purchasing the call option and selling the put option, the NPI investor can

make more profit and lose less in Scenario 2.

Example 3.3.3

To study the influence of the historical data size, we do another simulation with a

smaller amount of historical data, n = 50, the randomized s ∼ Bin(50, p) displayed

in Figures 3.27 and 3.28. Generally, the average NPI profit and loss is the same as

that in Example 3.4.2 with n = 252. The NPI method performs better than the

CRR model in Scenario 2. Figure 3.27 shows that the NPI investor invests in four

trade positions. Only buying the call option can offer some profit, while the other
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(b) selling the call option
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(c) buying the put option
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(d) selling the put option

Figure 3.27: NPI profit and loss for Example 3.3.3 in Scenario 1 (q = 0.7, n = 50, p = 0.7)

three positions lead to an amount of loss. From Figure 3.28, even though the NPI

investor also puts the money in four positions, the chance of involvement of wrong

trade positions, selling a call option and buying a put option, is far less than that

shown in Figure 3.27. Also, the profit earned in Figure 3.28 is greater with a higher

frequency than that in Figure 3.27. However, smaller n incurs more loss to the NPI

investor.

In the first scenario, like a call option buyer, the NPI investor can face some loss.

Different from Figure 3.25 (c), Figure 3.27 (a) shows that other than profit and no

trade, there exists some loss as well, which confirms what we discussed in Example

3.3.1. n is small in this example, then it is possible to reach the situation that the
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(a) buying the call option
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(b) selling the call option
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(c) buying the put option
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(d) selling the put option

Figure 3.28: NPI profit and loss for Example 3.3.3 in Scenario 2 (q = 0.7, n = 50, p = 0.8)

NPI investor pays the price higher than the payoff at maturity. For the same reason,

when s is small the NPI investor can sell the call option at a meager price, then it

eventually leads greater loss to the NPI investor as shown in Figure 3.27 (b). For

the put option, because a smaller n, no matter as a buyer or seller, the NPI investor

can encounter an even worse case than that with a larger n.

The same situation also happens to trade in Scenario 2. For the buying call

option, the NPI investor will not get involved in the trade when the maximum

buying price is lower than the CRR price. As it is shown in Figure 3.28 (a), instead

of all cases are ended up with a positive payoff shown in Figure 3.26(c), here some

cases hold no profit and loss meaning there is no trade. On the contrary, it is possible



3.3. Comparison of CRR and NPI for American options 132

to sell the call option causing a loss as shown in Figure 3.28 (b). In Figure 3.28 (c),

a smaller historical data also can expose the NPI put option buyer to a loss, as the

payoff cannot compensate the price. It is also easier, in this case, to sell the put

option at a lower price, which can lead to a more loss to the NPI investor than the

loss with a more substantial n. Therefore, sufficient historical data is crucial. To

be sure that s
n

does not deviate from the real probability in the market a lot, n is

supposed to be large enough. Then the prediction from the NPI method is more

accurate to guide the investor to a right trading decision with more profit and less

loss.

Example 3.3.4

To study the impact of the difference between p and q, here we simulate two

trades in Scenario 2 between the NPI investor and the CRR investor based on 50

historical data with the same real market probability p = 0.8 but different q, q = 0.6

and q = 0.52.

Figure 3.29 is the P&L of the NPI investor in the trade with the CRR investor

who uses q = 0.6 to make the prediction. The NPI investor quotes at the NPI prices

when the trade is happening and gets or pays the real mark payoff when the option

holder exercises the option. In this trade, it is clear that the NPI investor takes part

in the buying the call option and selling the put option, which are two wise actions

we mentioned for the options based on this specific underlying asset. In the buying

the call option action, all the trades are taken in action leading to a positive payoff.

And the profit outcomes are better than that in the trade with q = 0.7 in the last

example. When it comes to selling the put option, the NPI investor would encounter

profit and loss. Comparing to the results in Figure 3.28 (d) it is not very obvious

that the performance in this Example 3.4.3 is better than that in the example with

q = 0.7. Therefore, we run another simulation, where the CRR investor uses the

q = 0.52 to make the prediction. Here we simulate the example with q = 0.52 rather
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(b) selling the call option
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(c) buying the put option
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(d) selling the put option

Figure 3.29: NPI profit and loss for Example 3.3.4 in Scenario 2 (q = 0.6, n = 50, p = 0.8)

than q = 0.5 is to avoid making sure the none negative discount rate assumption

validation.

In Figure 3.30, we display the P&L of the NPI investor in the trade with the

CRR investor predicting with q = 0.52, while the other values stay the same. In

this case, the NPI investor also participants in the trade of buying the call option

and selling the put option. Be confronted with a larger difference between p and q,

the P&L of the NPI investor is better than that with q = 0.6. The profit earning

from buying the call option is slightly higher. The profit from selling the put option

is also greater, and the loss in the trade is lower than those in the example with

q = 0.6.

From these simulations, we conclude that insufficient n also exposes the influence

of q and p the deviation. The influence reflects in two parts: the first one is that
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(b) selling the call option
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(c) buying the put option
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(d) selling the put option

Figure 3.30: NPI profit and loss for Example 3.3.4 in Scenario 2 (q = 0.52, n = 50, p = 0.8)

more q and p deviation prevents the NPI investor getting involved in the unwise the

trading action, selling the call option and buying the put option in our example,

and also leads more NPI investor’s participants in the wise trading action. Another

part is that more deviation gives the NPI investor more profits in the trades. This is

because the more q and p deviation means the worse the CRR investor’s prediction

is. In the whole trading process between the NPI investor and the CRR investor,

the CRR prices are the criteria to justify whether the NPI buys or sells the option

or does nothing. So when n is large enough, no matter how much q deviates from p,

the s
n

is highly like to be around p, guiding the NPI investor a wise trading decision

and expected a profit. However, when n is small, if q and p are different but with

slight deviation, the randomized s
n

can be further away from p than q, resulting in

unwise trading position and a loss. As q gets worse, the chance that the randomized
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s
n

is closer to the real market p than q is higher, then the NPI investor’s P&L is

better.

According to the performance study of the NPI method for American option

pricing, we can conclude that the NPI method does not perform as good as the

CRR model under the assumption that the CRR model is right about the real

market. However, the prediction of the NPI method can be improved by having

sufficient historical data. When some wrong assumptions are used in the CRR

model, the NPI performs better. And sufficient historical data helps the NPI investor

make a better decision of more profit. A significant difference between the real

market probability and the risk-neutral probability influences the result of the NPI

performance, especially when the historical data is insufficient.

3.4 Concluding remarks

The NPI performances comparing to the CRR model performances
Influencing factor Scenario 1: The

CRR model is right
Scenario 2: The

CRR model is wrong
The NPI investor gets
involved in all trading

positions and has a
high chance to face

amount of loss trading
with the CRR investor.

The NPI investor trades
in the safe and profitable
trade positions and has
a high opportunity to
benefit from the trade
with the CRR investor.

Increase the number
of historical data

The loss of the NPI
investor decreases.

The profit of the NPI
investor drops. The NPI

investor makes fewer
mistakes of choosing
wrong trade position.

Enlarge the difference
between the risk-neutral

probability and the
real market probability

The profit of the NPI
investor increases.
Increase the pos-
sibility of the NPI

investor trading in the
right trade position.

Table 3.2: A summary of the NPI performance results



3.4. Concluding remarks 136

We developed the NPI method for American option pricing based on the back-

ward optimization method for a binomial tree model. NPI is an imprecise statistical

method continuously learning from the data. This property makes the NPI method

for American option pricing more close to reality: for the NPI method for American

option pricing, we can encounter the situation that the NPI investor would like to

exercise an American call option with no dividend early and this also happens in

the real market. All conditions to justify whether early exercise or holding further

for both call and put options are listed in this chapter. We also studied the average

stopping time and option prices comparison between the CRR model and the NPI

method by simulation and found that the stopping time of American options is dif-

ferent between the CRR model and the NPI method, which is one of the reasons

leading to different expected option prices. Then we illustrated the NPI investor’s

profit and loss trading with the investor who uses the CRR model in two scenarios.

In Scenario 1 the CRR investor uses the right assumption about the future market,

and Scenario 2 is under the assumption that the CRR investor does not use the

correct assumption. The outcomes show the NPI investor gets a better payoff in

Scenario 2 than Scenario 1. This conclusion is displayed in two parts, one that the

NPI investor only plays roles in the safer and wiser trade position, the other one

that the P&L of the NPI profit is also more optimistic than that in Scenario 1. We

also study the influence of the historical data size and the p and q difference and

find that the NPI method performs better when the historical data is sufficient or

p and q difference is substantial. A summary table of performance study and the

influence factors are displayed as Table 3.2.

There still some problems that need to be studied further. The study of the

historical data size is necessary, how much historical data is sufficient enough for a

relatively accurate prediction. Another challenging future study problem is to apply

the NPI method to the real market to see if it can fit in the empirical market.



Chapter 4

NPI for Exotic Option Pricing

After introducing NPI to the European option and the American option, we want

to see if the NPI method can be implemented for other complex types of options.

The term ’Exotic option’ was used by Rubinstein in 1990 [68], which is a long

time after the actual product was presented. Distinguishing from vanilla options,

the exotic option has flexible and complex trading features to meet the particular

demands of clients. Financial engineers add additional exercise conditions to the

vanilla options to make it exotic to meet their clients’ demands. As a derivative

financial product type, more and more new exotic options are produced by financial

engineers, like the digital option, the barrier option and the look-back option. In

this chapter, we first explain the concept of payoff monotonicity. Then we provide

the NPI option pricing methods for three types of exotic options, the digital option

in Section 4.2, the barrier option in Section 4.3 and the look-back option in Section

4.4, of which option values can be structured as a binomial tree with monotonic

node values. In Section 4.5, we conclude the content of this chapter and discuss

future research topics.

137
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4.1 Payoff monotonicity

So far, we have applied the NPI method to vanilla options, the European and

American options. There is a common characteristic of all vanilla options, which is a

monotonic payoff in the binomial tree. It means that the payoffs of the European and

the American options are a monotone function of the number of upward movements.

For the European call option, its payoff is [ST − Kc]
+, and for the European put

option, its payoff is [Kp − ST ]
+. As in the binomial tree, the top node at time

T has the largest value of ST , [ST − Kc]
+ has the largest value for the top node

and decreases as the node moves to the bottom of the tree. While [Kp − ST ]
+ has

the lowest value for the top node at time T and increases as the node moves to the

bottom of the tree. For the American options, although for each path in the binomial

tree, the exercise time τ can be different, the payoffs at τ are still monotonic. Based

on the definition of the American options in Section 1.1, [Sτ − Kc]
+ is the payoff

for the American call option, and [Kp − Sτ ]
+ is the payoff for the American put

option. As τ is the best time to exercise the American option to get the optimal

payoff for each path in the binomial tree, [Sτ − Kc]
+ has the largest value for the

top node at time τ and decreases as the node move to the bottom of the binomial

tree. [Kp − Sτ ]
+ has the lowest value for the top node at time τ and increases as

the node moves to the bottom of the tree. So the payoff of the American option is

also monotonic.

Applying the NPI method to an option with monotonic payoffs is less complicated

than to an option with non-monotonic payoffs. For instance, when we want to

calculate the upper expected payoff of an option with monotonic payoffs, we can

assign the upper probability from Equation (1.17) to each one-time-step path of

the upward movement in the binomial tree to get the result. Correspondingly, if the

lower expected payoff is needed, we can compute it by assigning the lower probability

from Equation (1.16) to each one-time-step path of the upward movement in the

binomial tree. However, if the payoffs of an option are not monotonic, the upper
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and lower expected payoffs cannot be calculated by assigning the upper and lower

probability. This does not mean we cannot use the NPI method to derive the lower

and upper expected value of non-monotonic payoffs. In Section 4.4, we will introduce

a way to manipulate the binomial tree according to the look-back option’s definition

to get a monotonic binomial tree, or we can use the idea in Chen’s thesis [19], that

the possible outcomes are listed first, and based on the results, we can assign the

most substantial probability mass to the greatest value of interest. In the following

sections, we first introduce the NPI method to the options with monotonic payoffs.

4.2 Digital option

The digital option can be dated back to the year 1978 when Beerden and Litzen-

berger [10] presented a pricing model to evaluate the price giving compensation

based on the portfolio price level, which if the portfolio price reaches a certain level

the product buyer can get the compensation otherwise he can not. It is the sim-

plest type of exotic option, which is attractive to the market because of its lower

contract entrance and lower transaction costs than other types of exotic option[61].

There are two kinds of digital options: all-or-nothing options and asset-or-nothing

options. All-or-nothing options give the predetermined amount of money X to the

option holder at the maturity if the option is in the money, or nothing if the option

expires out of the money or at the money. The all-or-nothing digital option is a

noncontinuous payoff option, of which payoff is constant and irrelevant to the un-

derlying asset maturity price. Asset-or-nothing options pay off the underlying asset

price ST at the maturity if the option is in the money, or nothing if the option is

out of the money or at the money.

Each kind of digital option can be classified as either a European option or an

American option, depending on whether it can be early exercised or not. For an

American digital option, the option holder can choose to exercise the option before

the maturity and get the predetermined payoff, while for a European option the
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option holder only has the right to exercise the option at maturity.

Due to its simple feature, the digital option can be priced through both the

discrete binomial tree model [30], and the continuous process model, the Black-

Scholes model [12]. Thavaneswaran et al. [70] also evaluate the uncertainty of

this specific option type in the pricing procedure using fuzzy set theory under the

assumption that the market is risk-neutral. We show that the NPI method can also

be implemented in digital option pricing.

4.2.1 All-or-nothing option

We start with the evaluation of the European all-or-nothing option. The holder

of a European all-or-nothing call option has the right to exercise it at the maturity

T , giving the payment X to the holder if it is in the money. To calculate the

option price, we need to evaluate the expected payoff at maturity. For a m time-

step call option, the option buyer will get a predetermined amount of payment X

at the maturity if ST > K or nothing if ST ≤ K, where K is the strike price.

Apply the NPI method by assuming that there are n historical data of stock prices

involved in the pricing procedure, including s increasing stock prices. The stock

price is a Bernoulli quantity that will either go up by the factor u or go down by

the factor d. On the basis of the historical information n, we can get the boundary

expected payoffs, the upper expected payoff, Ec = XP (Sm > K), the lower expected

payoff, Ec = XP (Sm > K), of the m time-step call option ended up with stock

price Sm. As acknowledged, the condition for the option exercise is Sm − K =

uY (m)dm−Y (m)S0−Kc > 0, then paths have positive payoffs are ones with the number

of upward movements Y (m) > lnKc−lnS0−m ln d
lnu−ln d

=: k∗
c . In Section 1.5, we illustrated

the boundary probabilities of event {Y (m) ≤ k∗|(n, s)} as Equations (1.30) and

(1.31), utilizing the conjugacy property, then we can get the NPI upper and lower

probabilities for the event Sm > K, which are
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P (Sm > K) = P (Y (m) > k∗
c ) =

(
n+m

m

)−1 m∑
k=⌊k∗c ⌋+1

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(4.1)

P (Sm > K) = P (Y (m) > k∗
c ) =

(
n+m

m

)−1 m∑
k=⌊k∗c ⌋+1

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(4.2)

Here k starts from ⌊k∗
c⌋+ 1 in the binomial tree of the digital option, where ⌊k∗

c⌋ is

the largest integer equal to or less than k∗
c . Applying the NPI interval probability

formulas in Equations (4.1) and (4.2) to the expected payoff calculation leads to the

expected option price. Below we list the maximum buying price and the minimum

selling price for the European all-or-nothing call option.

The maximum buying price of the call option

Vc = B(0,m)X

(
n+m

m

)−1 m∑
k=⌊k∗c ⌋+1

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(4.3)

The minimum selling price of the call option

Vc = B(0,m)X

(
n+m

m

)−1 m∑
k=⌊k∗c ⌋+1

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(4.4)

where B(0,m) is the discount factor between the initial time and the maturity. In

Equations (4.3), we assign the maximum probability to small k, while in Equation

(4.4), the maximum probability is assigned to large k to get the maximum expected

price.

For the m time step put option, the expected value at maturity would be cal-

culated based on the formulas, Ep = XP (Sm < K) and Ep = XP (Sm < K),

since the put option buyer can get the predetermined amount money X if the
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maturity stock price is lower than the strike price. Referring to Equations (1.28)

and (1.29), the upper and lower probabilities of event {Y (m) ≥ k∗|(n, s)} are pro-

duced. But the paths involved in the pricing process are determined by the condition

Sm−K = uY (m)dm−Y (m)S0−Kc < 0, then Y (m) < lnKc−lnS0−m ln d
lnu−ln d

=: k∗
p. The upper

and lower probabilities of the event {Y (m) < k∗|(n, s)} are,

P (Sm < K) = P (Y (m) < k∗
p) =

(
n+m

m

)−1 ⌈k∗p⌉−1∑
k=0

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(4.5)

P (Sm < K) = P (Y (m) < k∗
p) =

(
n+m

m

)−1 ⌈k∗p⌉−1∑
k=0

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(4.6)

Only paths from 0 to ⌈k∗
p⌉ − 1 are taken into account to ensure Y (m) < k∗

p, the

upper limitation should be either ⌊k∗
p⌋ if k∗

p is not a integer or k∗
p − 1 if k∗

p is an

integer. After getting the expected payoffs and the discounted procedure, we can

get pricing option formulae, the maximum buying price and the minimum selling

price of the put option shown in Equations (4.7) and (4.8).

The maximum buying price of the put option

Vp = B(0,m)X

(
n+m

m

)−1 ⌈k∗p⌉−1∑
k=0

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(4.7)

The minimum selling price of the put option

Vp = B(0,m)X

(
n+m

m

)−1 ⌈k∗p⌉−1∑
k=0

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(4.8)

In Equation (4.7), to get the maximum buying price of the put option, we assign

the maximum probability to large k. And to get the minimum selling price of the

put option, we assign the minimum probability to large k.
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Example 4.1

In this example, we exclude the discount procedure, because we would like to

focus on the difference between the two option pricing methods, the CRR model

and the NPI method. As the payoff of the digital option is a constant value, the

discounted procedure affects the expected profit and loss of the digital option more

strongly than the vanilla option.

In this example, we study a digital call option with a strike price K = 21, the

maturity m = 4 and a constant payoff X = 10 based on the underlying asset with

the initial stock price S0 = 20, upward movement factor u = 1.1, and downward

movement factor d = 0.9. In the CRR model, the prediction of the risk-neutral

probability of upward movement is q = 0.65, while the NPI method predicts on the

basis of n = 50 historical data. All these inputs are taken the same value as the

corresponding values in the European option examples in Chapter 2 for consistency.

Let us look at the difference of the expected price without the discount procedure,

namely the expected payoff, between the two methods.

From Figure 4.1 we see that the NPI upper and lower expected payoffs change

along with the increasing historical stock price s and intersect the CRR expected

payoff. Denote the s value of the intersection between the NPI upper expected

payoff and the CRR expected payoff as s9, and the intersection between the NPI

lower expected payoff and the CRR expected payoff as s10. When the s is less than

s9, the NPI upper expected payoff is lower than the CRR expected payoff, so it is

the chance to sell this call option. When s9 < s < s10, the CRR expected payoff

is in the middle of the NPI upper expected payoff and the NPI lower expected

payoff, then there is no willing for trades. In this example, the value of s leaded by
s
n
= q = 0.65, is in this interval. When s is greater than s10, the NPI lower expected

payoff is higher than the CRR expected payoff, then the investor who uses the NPI

method would like to buy this call option from the CRR investor. To have a more

comprehensive concept of the expected payoff, then we varying m and n and plot
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Figure 4.1: Expected payoffs of digital European call option from the NPI method and
the CRR model

the expected payoff of different situations in Figure 4.2.

In Figure 4.2, the first column contains three plots of expected payoffs from the

NPI method and the CRR model with the same value of n = 50 but varying m = 10,

m = 30 and m = 50, and the second column contains three expected payoff plots

with a fixed n = 252 but varying m = 10, m = 30 and m = 50. As we can see

from the figure that as m increase that both the CRR and NPI expected payoffs

increase as well, the NPI expected payoffs are approaching 10 quicker with larger m.

With a larger m, the underlying asset has a higher probability of achieving a higher

price, especially for the NPI method. As the NPI method keeps learning from the

data, with a larger m, more probabilities are assigned to the upward movement.

As each time of upward movement, the NPI method assigns one integer to both

the numerator and the dominator of the NPI probability of the upward movement,

which is greater than the probability in the last time step. Reflecting in the plots,

Figures 4.2 (c) and (e) show when m changes from 30 to 50, the CRR expected
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Figure 4.2: Expected payoffs of digital European call oprion from the NPI method and
the CRR model
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Figure 4.3: Expected payoffs of digital European put option from the NPI method and
the CRR model

payoff increases from the value 9.3481 to the value 9.6036, while the NPI expected

payoffs do not change the value as dramatically as the CRR expected payoff does.

When it comes to the NPI method, there is no big difference between the shapes of

expected payoff when m = 30 or m = 50. Comparing Figures 4.2 (a), (c), (e) to

Figures 4.2 (b), (d) and (f), we are told that with larger n the gap between the NPI

upper expected payoffs and the NPI lower expected payoffs are narrower than that

with smaller n.

We also plot the expected payoffs from two pricing methods for a put option with

the same strike price Kp = 21 and maturity m = 4 based on the same underlying

asset as the call option. The results are shown in Figure 4.3. There are two inter-

sections between the NPI expected payoffs and the CRR expected payoff, of which

s is denoted as s11 for lower NPI expected payoff and s12 for upper NPI expected

payoff. As s starts from 0, and corresponding expected NPI payoffs begin from 10,

the constant payoff value the option holder can gain from a put option that is in the
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money. As s increases but less than s11, the investor who uses the NPI method is

willing to buy the put option from the investor who uses the CRR model to make

the prediction. When s is in between s11 and s12, there is no trade between these

two investors. When s is greater than s12, the NPI investor will sell this put option

to the CRR investor. The whole shape of the NPI expected payoffs is decreasing as

s increases, approaching to zero with the larger s. We also study the n influence of

the expected NPI payoff, showing that for larger n the interval between the upper

and lower expected payoff narrows down, and if we increase m, the NPI expected

payoff will approach zero as s approaching to 50 or 10 as s approaches 0.

The digital option can have the feature of early exercise, which makes it an

American type of all-or-nothing digital option. The option holder can choose to

exercise the option anytime earlier than the maturity and get a fixed amount of

payment X. To exercise a call option, the spot price St needs to be higher than the

strike price K for the call option or lower than the strike price K for the put option.

Based on the fixed payment feature of the digital option, the earlier exercise,

the better to the option holder [45]. As long as the digital option is exercised, the

option holder can get the amount of money X. The earlier the investor receives

the money, the earlier the investor can either spend it or invest in another financial

product earning more money. Therefore, as an option holder, as long as the spot

price is above the strike price, the investor is supposed to exercise it immediately,

because the earlier time to get the fixed payoff the better. This exercising action is

always triggered no matter what option pricing method is used.

Figure 4.4 displays an example of the American all-or-nothing digital call option

through its binomial tree. The nodes in a circle is the one with a spot price higher

than the strike price, so in this example the option holder is supposed to exercise this

call option either at time 1 when the spot price at time 1 with the paths including S1

reaching S1
1 or at time 2 with the path with S1 = S2

1 and S2 = S2
2 and earns X as a
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Figure 4.4: The binomial tree of the American all-or-nothing digital option based on the
NPI method

payoff. Due to the American call option characteristic, there is no closed formula for

the digital option as well. At each node, we justified the condition with an indicator

1{Si
t>K}, where t represents the time step, and i represents the case at each time step

or the node of each time step in the tree. 1{Si
t>K} is 1 when Si

t > K otherwise it is 0.

We can get the option value at each node V i
t with t ∈ {0 . . .m}, i ∈ {1 . . . t+1} by

taking the maximum value between the indicator 1{Si
t>K} at the node to the fixed

payoff X and the discounted option expected NPI option value at t+1 from this node

B(t, t + 1)E(Vt+1|St = Si
t). As the option is monotonic, the NPI probabilities for

each time step is the same as the vanilla American option. According to Equations

(1.12) and (1.18), we assign the upper one step probability to the upward movement

path to calculate the upper expectation, P i
t (St+1 = Stu) = P i

t , and lower one step

probability to the upward movement path when the lower expectation is computed,

P i
t (St+1 = Stu) = P i

t . Then the backward pricing method is stated.

So far, we have illustrated the backward evaluation method. Below is the math-

ematical description of the backward method of the American digital call option to

compute the maximum buying price and the minimum selling price.
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The maximum buying price of the call option

V i
t {t∈{0...m−1}, i∈{1...t+1}}

= max
{
X1{Si

t>K}, B(t, t+ 1)E(Vt+1|St = Si
t)
}

= max
{
X1{Si

t>K}, (1 + r)−1
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]}
= max

{
X1{Si

t>K}, (1 + r)−1

[
s+ t− i+ 1

n+ t+ 1
V i
t+1 +

n− s+ i

n+ t+ 1
V i+1
t+1

]}
V i
T {T=m, i∈{1...T+1}}

= X1{Si
T>K} (4.9)

The minimum selling price of the call option

V i
t {t∈{0...m−1}, i∈{1...t+1}}

= max
{
X1{Si

t>K}, B(t, t+ 1)E(Vt+1|St = Si
t)
}

= max
{
X1{Si

t>K}, (1 + r)−1
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]}
= max

{
X1{Si

t>K}, (1 + r)−1

[
s+ t− i+ 2

n+ t+ 1
V i
t+1 +

n− s+ i− 1

n+ t+ 1
V i+1
t+1

]}
V i
T {T=m, i∈{1...T+1}} = X1{Si

T>K} (4.10)

Here B(t, t+1) is the one time-step discount factor which equals (1+r)−1 where

r is the discount rate.

The American all-or-nothing put option holder gets the fixed payoff if the spot

price St is lower than the strike price K. As the call option, the stopping time

of the put option is the first time of St < K, the earliest the best. Then at each

node, the indicator 1{St<K} filters the satisfied nodes. Compare X1{Si
t<K} to the

discounted expected future option value B(t, t + 1)E(Vt+1|St = Si
t) and take the

maximum value to be the current option value. In order to calculate the expected

future option value, we use the NPI lower expected probabilities at each time step

like what we have done in the single American put option evaluation in Section 3.2.

For the maximum buying price of the put option, we give the lowest probability to

the downward stock movement P i
t (St+1 = Std) = 1 − P i

t based on the conjugacy
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property. Similarly, we assign the highest probability to the upward stock movement

P i
t (St+1 = Std) = 1−P i

t to get its minimum selling price, which has been illustrated

in Section 1.4. The mathematical description of this backward option pricing method

for the American digital put option is shown below.

The maximum buying price of the put option

V i
t {t∈{0...m−1} i∈{1...t+1}}

= max
{
X1{Si

t<K}, B(t, t+ 1)E(Vt+1|St = Si
t)
}

= max
{
X1{Si

t<K}, (1 + r)−1
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]}
= max

{
X1{Si

t<K}, (1 + r)−1

[
s+ t− i+ 2

n+ t+ 1
V i
t+1 +

n− s+ i− 1

n+ t+ 1
V i+1
t+1

]}
V i
T {T=m i∈{1...T+1}}

= X1{Si
T<K} (4.11)

The minimum selling price of the put option

V i
t {t∈{0...m−1} i∈{1...t+1}}

= max
{
X1{Si

t<K}, B(t, t+ 1)E(Vt+1|St = Si
t)
}

= max
{
X1{Si

t<K}, (1 + r)−1
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]}
= max

{
X1{Si

t<K}, (1 + r)−1

[
s+ t− i+ 1

n+ t+ 1
V i
t+1 +

n− s+ i

n+ t+ 1
V i+1
t+1

]}
V i
T {T=m i∈{1...T+1}} = X1{Si

T<K} (4.12)

Referring to the backward pricing method based on the American style digital

option, even though there is no closed formula for this type of option, we can still

get the expected option price quickly by using of the R software. The R program of

the pricing formulae is given in Appendix B.2.
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(a) buying a call option

(b) selling a put option

Figure 4.5: American style digital options pricing example
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Example 4.2

In this example, we present the results of buying a call option expected price and

selling a corresponding put option price in Figure 4.5. At each node of the binomial

tree, there are two values, of which the one outside the parenthesis is the asset price,

and the other in the parenthesis is option value. The nodes in the oval are the nodes

optimal for early exercise. In this example, the stock price starts with 20, and it

will either go up by the upward movement factor u = 1.1 or down by the downward

movement factor d = 0.9. For the option, we set the strike price is K = 21 and the

maturity m = 4 for both call and put options. The NPI pricing procedure is based

on n = 50 historical data and among them the successful data is s = 30, and the

discount rate is 0.02 calculated by formula r = s
n
u+ n−s

n
d− 1. After the evaluation,

we know that the NPI investor will buy this call option at a price 7.076, or sell the

corresponding put option at a price 10. As we can see from Figure 4.5 (b), this put

option is already in the money at the initial time, so it is optimal to be exercised at

the initial time. Then, of course, the minimum selling price of this put option is 10.

By far, we finish setting up the option pricing method for the all-or-nothing digital

option based on NPI. In the next section, we move on to study the other type of

digital option, the asset-or-nothing digital option.

4.2.2 Asset-or-nothing option

Different from the all-or-nothing option, this kind of digital options pays the

option buyer the underlying asset maturity price ST rather than a fixed amount of

money. The European type of asset-or-nothing option only offers the exercise option

at maturity. Therefore, an option holder can either get a payment ST if ST > K

for call options or ST < K for put options or nothing if ST ≤ K for call options or

ST ≥ K for put options.

The call option is studied at first. By the European option definition, we know

that the expected price of this style of option is the discounted expectation of stock
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price satisfied the condition ST > K. Based on the NPI method, the lower expected

value is E(ST |ST > K) = STP (ST > K) and the upper expected value is E(ST |ST >

K) = STP (ST > K). For a m-period call option with n historical stock price data

among them s historical stock prices go up, we can define the stock price paths

holding the positive payoff in the pricing procedure on the basis of the exercise

condition, Sm − K = uY (m)dm−Y (m)S0 − Kc > 0 ⇔ Y (m) > lnKc−lnS0−m ln d
lnu−ln d

=: k∗
c .

We already know the formulae of P (ST > K) and P (ST > K), Equations (4.1) and

(4.2). Thus, if we want to evaluate a call option with the m time step call option

ended up with the stock price Sm, the maximum buying and the minimum selling

prices of the call option are,

The maximum buying price of the call option

Vc = B(0,m)

(
n+m

m

)−1 m∑
k=⌊k∗c ⌋+1

Sm

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(4.13)

The minimum selling price of the call option

Vc = B(0,m)

(
n+m

m

)−1 m∑
k=⌊k∗c ⌋+1

Sm

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(4.14)

where B(0,m) represents the discount factor between the initial time and maturity.

To get the maximum buying price, we assign the maximum possible probability to

the lowest possible value for k, then the maximum possible remaining probability to

the second lowest value for k, and so on. To get the minimum selling price, we assign

the maximum possible probability to the greatest value for k, then the maximum

possible remaining probability to the second largest value for k, and so on.

The put option holder gets the underlying asset price at maturity ST as his

payment when ST < K, then the expected payoff for him is E(ST |ST < K). Based

on the NPI method, we can have the interval expected payoffs, with lower expected

value E(ST |ST < K) = STP (ST < K) and the upper expected value E(ST |ST <
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K) = STP (ST < K). In terms of a m period put option, the paths included

in the pricing procedure are the same as the all-or-nothing European put option,

Y (m) < lnKc−lnS0−m ln d
lnu−ln d

=: k∗
p. Then the formulae the maximum buying price and

the minimum selling price of this m time step put option ended up with a maturity

stock price Sm are,

The maximum buying price of the put option

Vp = B(0,m)

(
n+m

m

)−1 ⌈k∗p⌉−1∑
k=0

Sm

(
s+ k − 1

k

)(
n− s+m− k

m− k

)
(4.15)

The minimum selling price of the put option

Vp = B(0,m)

(
n+m

m

)−1 ⌈k∗p⌉−1∑
k=0

Sm

(
s+ k

k

)(
n− s+m− k − 1

m− k

)
(4.16)

Here to get the upper boundary price, we do the same steps as for the call option,

assigning the maximum possible probability to the most considerable value for k,

then the maximum possible remaining probability to the second largest value for k,

and so on. Also, for the maximum buying price’s probability assignment is the same

as that for the call option. Below we give an example of the asset-or-nothing option

pricing procedure.

Example 4.3

To straightforward see the differences between the NPI method and CRR model,

we do not include the discount procedure as well. Both call and put options’ expected

NPI payoffs and the constant CRR payoffs are plotted in Figure 4.6. The option

is also based on the same underlying asset as in Example 4.1, S0 = 20, u = 1.1,

d = 0.9 with the same maturity m = 4 and strike price K = 21. The CRR model is

pricing under the assumption q = 0.65, while the NPI method predicts the option

price from n historical data with varying s. Figure 4.6 contradistinguishing with
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Figure 4.6: American style digital asset-or-nothing options pricing example
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Figures 4.1 and 4.3 has an obvious difference that the NPI expected payoffs are not

approaching to a constant value because the payment in the asset-or-nothing option

is not a constant value anymore. Increasing n can still make the upper and lower

interval smaller, since more historical information supports a more accurate result.

After talking about the European option for the asset-or-nothing digital option,

the application of the NPI method to the American option is also appealing. The

American option gives the holder the right to exercise the option at any time in

the option life period when he thinks it is optimal. The payoff is the spot price St

at the exercise time t. For the call option, the condition to get a positive payoff is

St > K. Due to the early exercise right, there is no closed formula for the option

pricing procedure. Instead, we use the backward optimization method comparing the

holding value and the instant value of the call option in order to get the initial price.

Similar to the all-or-nothing American call option in Section 4.2.1, the indicator for

the condition 1{Si
t>K}, with t ∈ {0, . . . ,m} and i ∈ {, 1 . . . , t+1}, is used to qualify

the instant value of the option Si
t following the exercise condition. The holding

value of the option is the discounted NPI expected value B(t, t+ 1)E(Vt+1|St = Si
t)

calculating from the one step binomial tree with initial node Si
t . Here B(t, t + 1)

is the one time-step discount factor which equals (1 + r)−1 where r is the discount

rate. Take the greater value to be the current option value V i
t , t ∈ {0, . . . ,m} i ∈

{1, . . . , t+ 1} at time t. After rolling back from the maturity to the initial time, we

can get the expected option prices, the maximum buying price, and the minimum

selling price.
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The maximum buying price of the call option

V i
t {t∈{0...m−1}, i∈{1...t+1}}

= max
{
Si
t1{Si

t>K}, B(t, t+ 1)E(Vt+1|St = Si
t)
}

= max
{
Si
t1{Si

t>K}, (1 + r)−1
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]}
= max

{
Si
t1{Si

t>K}, (1 + r)−1

[
s+ t− i+ 1

n+ t+ 1
V i
t+1 +

n− s+ i

n+ t+ 1
V i+1
t+1

]}
V i
T {T=m, i∈{1...T+1}}

= Si
T1{Si

T>K} (4.17)

The minimum selling price of the call option

V i
t {t∈{0...m−1}, i∈{1...t+1}}

= max
{
Si
t1{Si

t>K}, B(t, t+ 1)E(Vt+1|St = Si
t)
}

= max
{
Si
t1{Si

t>K}, (1 + r)−1
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]}
= max

{
Si
t1{Si

t>K}, (1 + r)−1

[
s+ t− i+ 2

n+ t+ 1
V i
t+1 +

n− s+ i− 1

n+ t+ 1
V i+1
t+1

]}
V i
T {T=m, i∈{1...T+1}} = Si

T1{Si
T>K} (4.18)

The put option exercise condition is St < K by digital option definition, and

an option holder can get the spot price St as his payment at the expiration t.

Then the option value at each node V i
t t ∈ {0 . . .m} and i ∈ {1 . . . t + 1}, at

time t is the greater value between the instant value Si
t1{Si

t<K} and the holding

value B(t, t + 1)E(Vt+1|St = Si
t) gained based on the NPI method. In the tree,

it is obvious that the put option instant value is monotone decreasing, the lower

path holding a lower payoff. Thus, to calculate the upper holding value, we should

assign the upper probability to the upward movement, B(t, t+1)E(Vt+1|St = Si
t) =

(1 + r)−1
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]
, and to get the lower holding value, we should

assign lower probability to the upward movement, B(t, t+1)E(Vt+1|St = Si
t) = (1+

r)−1
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]
. Therefore, the maximum buying and the minimum

selling prices can be written as following.
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The maximum buying price of the put option

V i
t {t∈{0...m−1}, i∈{1...t+1}}

= max
{
Si
t1{Si

t<K}, B(t, t+ 1)E(Vt+1|St = Si
t)
}

= max
{
Si
t1{Si

t<K}, (1 + r)−1
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]}
= max

{
Si
t1{Si

t<K}, (1 + r)−1

[
s+ t− i+ 1

n+ t+ 1
V i
t+1 +

n− s+ i

n+ t+ 1
V i+1
t+1

]}
V i
T {T=m, i∈{1...T+1}}

= Si
T1{Si

T<K} (4.19)

The minimum selling price of the put option

V i
t {t∈{0...m−1}, i∈{1...t+1}}

= max
{
Si
t1{Si

t<K}, B(t, t+ 1)E(Vt+1|St = Si
t)
}

= max
{
Si
t1{Si

t<K}, (1 + r)−1
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]}
= max

{
Si
t1{Si

t<K}, (1 + r)−1

[
s+ t− i+ 2

n+ t+ 1
V i
t+1 +

n− s+ i− 1

n+ t+ 1
V i+1
t+1

]}
V i
T {T=m, i∈{1...T+1}} = Si

T1{Si
T<K}

(4.20)

The best time to exercise the option is also an important question. In a one-step

binomial tree, the criteria to justify if an investor should early exercise the option

is the instant value of option St should be higher than the holding value H(t) =

B(t, t+1)E(Vt+1|St = Si
t) ≥ B(t, t+1)St(1+rt+1) = B(t, t+1) (StuPt + Std(1− Pt))

for both upper and lower option values. Here rt+1 represents the expected return

calculated from the NPI probability Pt, rt+1 + 1 = uPt + d(1 − Pt). Therefore, we

can get the condition for holding an option

H(t) ≥ (1 + r)−1St(1 + rt+1) > St ⇔ rt+1 > r

H(t) ≥ (1 + r)−1 (StuPt + Std(1− Pt)) > St ⇔ Pt >
1 + r − d

u− d
(4.21)
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(a) buying a call option

(b) selling a put option

Figure 4.7: American style digital asset-or-nothing options pricing example

Now let us look at an example of asset-or-nothing digital option in American style

in the R program that is included in Appendix B.3.

Example 4.4

Consider an asset-or-nothing American option is based on a stock with the initial

stock price S0 = 20, the upward movement factor u = 1.1 and downward movement

factor d = 0.9. Both call and put options have a strike price K = 21 and the

maturity m = 4. The NPI method does the prediction based on 50 historical data

and 30 of them are up raising stock prices. At each node of the tree in Figure 4.7,

there are two values, which the stock price is outside the parenthesis and the option

value is in the parenthesis. The case of early exercise is disclosed as the node in the

oval shape. Therefore, for the NPI call option buyer, his optimal exercise time is
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either at time 1 when S1 = 22, or at time 3 when S1 = 18 and S3 = 21.78. So this

call option buyer expected to buy this option at 15.539 as the maximum. For a NPI

put option seller, the investor makes the prediction, and it turns out this put option

is optimal to be exercised at the initial time. Therefore, the investor expects to sell

this put option at 20, the same value as the stock price in this example.

4.3 Barrier option

As another important type of exotic option, the barrier option has an unique

feature distinguishing it from the vanilla option that a barrier of the underlying asset

price is predetermined. This barrier of the asset price justifies the option’s validation

that if the future asset price reaches the barrier, either this option expires or be valid

immediately. Merton [57] first presented the down and out option in 1973. There are

two classes of the barrier option, ”knock-in” and ”knock-out” barrier options. The

”knock-in” option has a barrier making the option exercisable, while the barrier

of the ”knock-out” option causes the expiration of the option. And according to

the initial underlying asset price, both ”in” and ”out” options are separated into

”up” and ”down” options. Therefore, there are eight types of barrier options. Cox

and Rubinstein [29] illustrated this type of barrier option pricing model based on

the CRR model in 1985. Rubinstein and Reiner [69] listed formulae for the eight

different barrier options in a continuous time model. Boyle and Lau [17] used the

binomial lattices to price the barrier option and try to find its convergence of prices

of barrier options. In 1996, Reimer and Sandmann [67] explained the formulae for all

types of barrier options including European style and the American style, which are

all set up in the risk-neutral world. In 2006, a modified standard binomial method

which can price the American type barrier option was introduced by Gaudenzi and

Lepellere [35], which is more efficient and can be used in the trinomial method as

well. Appolloni et al. [3] explore the binomial lattice method to evaluate the step

double barrier options.
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If we denote the barrier of asset price as Sb, for the knock-in options, the options

are valid when the stock price is less than Sb for the down-and-in option or greater

than Sb for the up-and-in option. Here we use the indicator 1 to describe the barrier,

so for the down-and-out option, the barrier is denoted as 1{St>Sb,t∈(0,...,T )} and for

the up-and-in option, the barrier is denoted as 1 − 1{St<Sb,t∈(0,...,T )}. According

to the payoffs for the call and put options, we can define the knock-in options

mathematically as follows.

Knock-in options

down-and-in


[ST −Kc]

+
(
1− 1{St>Sb,t∈(0,...,T )}

)
, Call

[Kp − ST ]
+
(
1− 1{St>Sb,t∈(0,...,T )}

)
, Put

For a down-and-in option, as long as the stock price during the option valid

period St goes down and reaches the barrier value Sb, the option holder can get the

payoff as [ST −Kc]
+ for the call option or [Kp−ST ]

+ for the put option at maturity.

up-and-in


[ST −Kc]

+
(
1− 1{St<Sb,t∈(0,...,T )}

)
, Call

[Kp − ST ]
+
(
1− 1{St<Sb,t∈(0,...,T )}

)
, Put

Regarding to an up-and-in option, as long as the stock price during the option

valid time St goes up and reaches the barrier value Sb, the corresponding option is

immediately valid and offers the payoff [ST −Kc]
+ for the call option or [Kp −ST ]

+

for the put option at maturity.

For the knock-out options, the option is expired once the stock price St touch

the barrier Sb. Thus, the down-and-out option is valid when 1{St>Sb,t∈(0,...,T )}, and

the up-and-out option is valid when 1{St<Sb,t∈(0,...,T )}. So the mathematical formulae

of the knock-out options are given below.
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Knock-out options

down-and-out


[ST −Kc]

+1{St>Sb,t∈(0,...,T )}, Call

[Kp − ST ]
+1{St>Sb,t∈(0,...,T )}, Put

For a down-and-out option, if the stock price during the option validation St is

always greater than the barrier value Sb, then the option holder can get the payoff

as [ST −Kc]
+ for the call option or [Kp − ST ]

+ for the put option in the end.

up-and-out


[ST −Kc]

+1{St<Sb,t∈(0,...,T )}, Call

[Kp − ST ]
+1{St<Sb,t∈(0,...,T )}, Put

When it comes to an up-and-out option, during the option validation, as long as

the stock price St always holds a lower value than the barrier value Sb, the option

holder can the payoff as [ST − Kc]
+ for the call option or [Kp − ST ]

+ for the put

option at maturity.

From the definition of the barrier option, we can tell that to evaluate a barrier

option we need to monitor the underlying asset regularly during the option life

period, and as long as the option reaches the bound either the option is valid or

expired. The NPI method can also be applied to this option. For the knock-out type

of option, even though there is no closed form formula, we can use the backward

valuation method to get the expected option price.

Figure 4.8 displays a knock-and-out call option. As we can see, the payoff is still

monotonic with the path, and the probabilities of the NPI boundary prices of the

barrier option for each path is still the same as the vanilla options. However, due to

the bound Sb the path included in the pricing procedure is reduced, which means

that the path having the asset price greater or equal to the Sb are excluded, even

though they hold a positive payoff. In this example, only the paths with all solid

line in three-time steps are involved in the pricing evaluations.

The details of evaluating this type of exotic option are based on the backward
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Figure 4.8: The binomial tree based on the NPI method for an up-and-out call option

valuation method. We start from the maturity payoff [ST −Kc]
+ for the call option

and [Kp−ST ]
+ for the put option, rolling back to the initial time. And at each time

step, we check the condition of the ”knock-in” or ”knock-out” option. For example,

there an up-and-out m period call option with the barrier Sb, we can get the maturity

payoff at each node i as [Si
T − Kc]

+ with i ∈ {1, . . . , T + 1} and T = m, and we

check the underlying asset price at maturity Si
T following the condition Si

T < Sb. If

not, the option value at that node is immediate equals zero. Thus, the payoff of the

whole tree is V i
T = [Si

T −Kc]
+1{ST<Sb}. Then we move to the one time step before

the maturity T − 1, which the option value is the expectation at maturity after the

discount procedure if the spot price at T is less than Sb. Otherwise, the option value

equals zero, thus, V i
T−1 = B(T − 1, T )[Si

T −Kc]
+1{ST<Sb}1{ST−1<Sb}. According to

the NPI method, we can get the upper and lower expectations based on n historical

stock price data with s increased prices, then these values lead us to two boundaries
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of the option value at time T−1. After doing the same procedure at every time step,

we can get two initial boundary option values, named as the maximum buying price

and the minimum selling price. For an up-and-out call option, the mathematical

description is listed below.

The maximum buying price of the call option

V i
t {t∈{0...m−1} i∈{1...t+1}}

= B(t, t+ 1)
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]
1{Si

t<Sb}

= (1 + r)−1

[
s+ t− i+ 1

n+ t+ 1
V i
t+1 +

n− s+ i

n+ t+ 1
V i+1
t+1

]
1{Si

t<Sb}

V i
T {T=m i∈{1...T+1}}

= [Si
T −Kc]

+1{Si
T<Sb} (4.22)

The minimum selling price of the call option

V i
t {t∈{0...m−1} i∈{1...t+1}} = B(t, t+ 1)

[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]
1{Si

t<Sb}

= (1 + r)−1

[
s+ t− i+ 2

n+ t+ 1
V i
t+1 +

n− s+ i− 1

n+ t+ 1
V i+1
t+1

]
1{Si

t<Sb}

V i
T {T=m i∈{1...T+1}} = [Si

T −Kc]
+1{Si

T<Sb} (4.23)

For an up-and-out put option, the probability assignment is the same as what

we have done to the vanilla American put option in Chapter 3. Then we control the

option’s validation by the barrier of the asset price Si
t < Sb. There are no closed

formulae for the put option as well. The mathematical description of the backward

method can be written as follows.

The maximum buying price of the put option

V i
t {t∈{0...m−1} i∈{1...t+1}}

= B(t, t+ 1)
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]
1{Si

t<Sb}

= (1 + r)−1

[
s+ t− i+ 2

n+ t+ 1
V i
t+1 +

n− s+ i− 1

n+ t+ 1
V i+1
t+1

]
1{Si

t<Sb}

V i
T {T=m i∈{1...T+1}}

= [Kp − Si
T ]

+1{Si
T<Sb} (4.24)
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Figure 4.9: The binomial tree of an up-and-out call option

The minimum selling price of the put option

V i
t {t∈{0...m−1} i∈{1...t+1}} = B(t, t+ 1)

[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]
1{Si

t<Sb}

= (1 + r)−1

[
s+ t− i+ 1

n+ t+ 1
V i
t+1 +

n− s+ i

n+ t+ 1
V i+1
t+1

]
1{Si

t<Sb}

V i
T {T=m i∈{1...T+1}} = [Kp − Si

T ]
+1{Si

T<Sb} (4.25)

When it comes to the down-and-out options, only the barrier of asset changes

to Si
t > Sb, other than that, the probability assignment and payoff are the same as

the up-and-out barrier options.

Example 4.5

By using R program in Appendix B.4, here we predict an up-and-out call option

with the strike price K = 21 based on n = 50 and s = 30 historical data. In this

example, the underlying asset with an initial price S0 = 20 has a barrier Sb = 26.

Then any path reaches the barrier of the asset price is not included in the option

evaluation. As the stock price is a Bernoulli random quantity, either up with the

factor u = 1.1 or down with the factor d = 0.9, the asset price at each node in the

binomial tree is determined. In Figure 4.9, the two nodes higher than the barrier
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Figure 4.10: The binomial tree based on the NPI method for an up-and-in call option

are in the boxes, which are S1
3 = 26.62 and S1

4 = 29.282. So the paths have the

nodes in the boxes not involved in the evaluation holding the value zero. Then we

can get the option value at every node of the binomial tree. Here the discount rate

is a constant value equal to s
n
= 30

50
= 0.02. After doing the backward evaluation

until the initial time, we get the expected price of this up-and-out barrier option

shown as the value 0.675 in the parenthesis in Figure 4.9.

Unlike the knock-out option, the knock-in option cannot simply use the backward

optimization method to make the prediction. It is easier to illustrate this in an

example. Figure 4.10 shows an up-and-in call option with the barrier of the asset

price Sb. Based on the definition of the up-and-in call option, as S1
2 and S1

3 are

higher than the barrier price Sb, the only two paths in the evaluation are V0 →

V 1
1 → V 1

2 → V 1
3 and V0 → V 1

1 → V 1
2 → V 2

3 . However, the backward method cannot
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be used to do the evaluation. Unlike the knock-out barrier option, we need to know

the valid path before making the prediction. If not, for example, the paths ended up

with V 2
3 are V0 → V 1

1 → V 1
2 → V 2

3 which is valid, and V0 → V 1
1 → V 2

2 → V 2
3 which

is invalid. But if we use backward method directly, as V 2
3 has a positive payoff, for

the path V0 → V 1
1 → V 2

2 → V 2
3 , after discounted V 2

2 should have a positive payoff

as well. Doing the same step rolling back procedure until the initial time, shows

clearly that this path is not included in the evaluation. Then all the works above

are just a waste of time.

If at time t the stock price Si
t is the first node of each path from the initial time

qualified with the barrier condition, then we can see option value at this node as

a vanilla European option with the same strike price but different maturity T − t.

After getting all the option value at every first valid node in the tree, then we

use the backward evaluation method to roll back to the initial time and get the

expected option price. For the call option listed in Figure 4.10, as V 1
2 is the first

node that higher than Sb then, we see it as a one-step European call option with

the initial stock price S1
2 . Using Equation (2.14) for buying position and Equation

(2.15) for selling equation, we can get the option value at node V 1
2 . One thing we

need to pay attention that for this European option the historical data is n+ t, and

the successful historical data is s + t − i + 1. Then apply the backward valuation

method, then we obtain the expected value V0. This pricing procedure can be

described mathematically as follows.
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The maximum buying price for the call option

V i
t {t∈{0...m−1} i∈{1...t+1}}

=



B(t, t+ 1)
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]
If Si

t < Sb and Si
t−1 < Sb

B(t, T )
(
m+n+t

m

)−1∑m−t
k=⌈k∗c ⌉

[ukdm−t−kSi
t −Kc]

×
(
s+t−i+k

k

)(
n−s−t+i+m−k−1

m−k

)
If Si

t ≥ Sb and Si
t−1 < Sb

(4.26)

V i
T {T=m i∈{1...T+1}}

= [Si
T −Kc]

+
(
1− 1{St<Sb,t∈(0,...,T )}

)
(4.27)

The minimum selling price for the call option

V i
t {t∈{0...m−1} i∈{1...t+1}} =



B(t, t+ 1)
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]
If Si

t < Sband Si
t−1 < Sb

B(t, T )
(
m+n+t

m

)−1∑m−t
k=⌈k∗c ⌉

[ukdm−t−kSi
t −Kc]

×
(
s+t−i+k+1

k

)(
n−s−t+i+m−k−2

m−k

)
If Si

t ≥ Sb and Si
t−1 < Sb

(4.28)

V i
T {T=m i∈{1...T+1}} = [Si

T −Kc]
+
(
1− 1{St<Sb,t∈(0,...,T )}

)
(4.29)

For an up-and-in put option, the option maturity value is [Kp − Si
T ]

+

×
(
1− 1{St<Sb,t∈(0,...,T )}

)
. Otherwise, the option value is either the discounted value

rolling back and discounted from the next time steps option value or equal to the

European put option with the maturity T−t calculated based on n+t historical data

among them s+ t− i+1 are the raised stock price. The mathematical description to

calculate the maximum buying price and the minimum selling price is listed below.
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The maximum buying price for the put option

V i
t {t∈{0...m−1} i∈{1...t+1}}

=



B(t, t+ 1)
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]
If Si

t < Sb and Si
t−1 < Sb

B(t, T )
(
m+n+t

m

)−1∑m−t
k=⌈k∗c ⌉

[Kp − ukdm−t−kSi
t ]

×
(
s+t−i+k+1

k

)(
n−s−t+i+m−k−2

m−k

)
If Si

t ≥ Sb and Si
t−1 < Sb

(4.30)

V i
T {T=m i∈{1...T+1}}

= [Kp − Si
T ]

+
(
1− 1{St<Sb,t∈(0,...,T )}

)
(4.31)

The minimum selling price for the put option

V i
t {t∈{0...m−1} i∈{1...t+1}} =



B(t, t+ 1)
[
P i
t V i

t+1 + (1− P i
t )V

i+1
t+1

]
If Si

t < Sb and Si
t−1 < Sb

B(t, T )
(
m+n+t

m

)−1∑m−t
k=⌈k∗c ⌉

[Kp − ukdm−t−kSi
t ]

×
(
s+t−i+k

k

)(
n−s−t+i+m−k−1

m−k

)
If Si

t ≥ Sb and Si
t−1 < Sb

(4.32)

V i
T {T=m i∈{1...T+1}} = [Kp − Si

T ]
+
(
1− 1{St<Sb,t∈(0,...,T )}

)
(4.33)

To price the down-an-in barrier option, we change the barrier of the underlying

asset price to the first underlying asset lower or equal to the barrier at time t and(
1− 1{St>Sb,t∈(0,...,T )}

)
at maturity.

Example 4.6

Example 4.6 is an up-and-in call option in buying position based on the same

underlying asset. The barrier of the underlying asset is Sb = 23, so any path contains

asset price higher or equal to 23 are included in the pricing process. In Figure 4.11,

there is the binomial tree of this option. The nodes in the box are the two cases that

the underlying asset price first over the barrier. Let us look at first node S1
2 = 24.2.

When the underlying asset price encounters this price, then the paths have this
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Figure 4.11: The binomial tree of an up-and-in call option

value included in the option price evaluation. So as we described the up-and-in

option evaluation, we first compute the option value at this node by seeing it as a

vanilla European option with the initial stock price S0 = 24.2 and maturity m = 2.

Then we roll this option value back to the initial time. The second node in the

box is S2
4 = 23.958. This is a maturity node, so we use the backward method to

get the initial expected value. However, we would like to highlight one point that

as the S2
4 = 23.958 is also included in the paths containing S1

2 = 18, so the only

backward procedure of the paths that have S2
4 as the first node over the barrier

are 20 → 22 → 19.8 → 21.78 → 23.958 and 20 → 18 → 19.8 → 21.78 → 23.958.

After pricing, the maximum buying price of this up-and-in barrier call option is 1.89

shown in the parenthesis in Figure 4.11.

4.4 Look-back option

We have implemented the NPI method to two relatively less complicated type

of exotic options, the digital option, and the barrier option. In this section, the NPI

method’s application to the look-back option is presented.

’Look-back option’ as one of the exotic option is introduced by Goldman, Sosin
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and Gatto [39]. The look-back option is classed into two types: the look-back

option with the fixed strike price and the look-back option with the float strike

price. The option with fixed strike price entitles the option holder to get the payoff

as the difference between the maximum underlying asset price over the observation

option period and the strike price for the call option max
0≤i≤m

S(ti)−Kc or the positive

value of the strike price minus the minimum underlying asset price during this

period for the put option Kp − min
0≤i≤m

S(ti). The one with float strike price gives the

option holder the right of buying the underlying asset at the minimum underlying

asset price during the option life period min
0≤i≤m

S(ti) to the call option holder or

selling the underlying asset at its maximum price during this period max
0≤i≤m

S(ti).

Goldman, Sosin, and Gatto [39] provided the pricing method based on the Brownian

motion when they first presented this type of option. The CRR model can be

used in the look-back option as well. Hull and White [44] elaborated the path-

dependent option evaluation based on the binomial tree in 1993. In the same year,

Amin[2] considered the generalization of the CRR model to make it suitable for path-

dependent options’ evaluation by adding a jump-diffusion process. Kima, Park and

Qian [51] derived a binomial tree model with jump diffusion specific for the look-

back option. Babbs [7] monitored the look-back option with a discrete time scheme

instead of the continuous monitor based on the binomial tree. Park [62] also explored

a binomial tree model with double-exponential jumps and studied its convergence.

According to the definition of the look-back option with the fixed or float strike

price, the payoff of the look-back option is pretty clear. However, the payoff of the

look-back option can be not monotone with the path structure anymore. Let us

look at the tree example in Figure 4.12 to explain the monotonicity of the option.

In Figure 4.12, there is a tree of the stock price, and at the last step, we also

listed the maximum and the minimum stock prices of each movement path. The

stock price starts from S0, and at each time step, it will go either up by the factor

u or down by the factor d. Generally, the monotonicity of the option value highly
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Figure 4.12: The binomial tree of the stock price with maximum and minimum stock price
of each path

depends on the movement factor, ud > 1, ud = 1, or ud < 1. For example, in this

4-period option tree the option value is not monotone when ud < 1. The maximum

stock price of the path S0 → S1
1 → S2

2 → S2
3 → S2

4 is S2
4 , while the maximum stock

price of the path S0 → S1
1 → S1

2 → S2
3 → S3

4 is S1
2 , because ud < 1, then S2

4 < S1
2 .

But when it comes to the other path ends with the same maturity stock price S2
4 ,

S0 → S1
1 → S1

2 → S1
3 → S2

4 , the maximum stock price is S1
3 which is higher than

the maximum stock price of the picked path ending with S3
4 , which is equal to S1

2 .
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This causes the results that look-back option payoff is not monotonic. So the option

values are not monotonic in the binomial tree. When the option is monotonic, then

we can use the same NPI probability assignment as other types of options. If not,

we need to think about the probability structure again, which is not considered in

this thesis but challenging and interesting topic for a future topic. Here instead of

giving a new probability assignment, we offer a new binomial tree which is monotone

inspired by the look-back option pricing model presented by Cheuk and Vorst [20]

in 1997.

Cheuk and Vorst [20] presented the new binomial approach for the look-back

option with float strike price. As acknowledged, the payoff of a look-back call option

with a float price is defined as S(T ) − min
0≤i≤m

S(ti). Here t0 is the initial time of

the option contract, and tm is the maturity time T . Then for any time in the

binomial tree tj, denote the minimum stock price of the option life period as M(tj) =

min
0≤i≤j

S(ti) = S(tj)u
−k, then the look-back call option value is V (S(tj),M(tj), tj).

Define the power of stock price upward movement factor u:

k = ln[S(tj)/M(tj)]/ ln(u) (4.34)

S(tj) ≥ M(tj), k is positive integer and k = 0, 1, . . . , j, so the option value at each

time step can be transferred to a function depending on the stock price S(tj) and

k, i.e.

V (S(tj),M(tj), tj) = S(tj)−M(tj) = S(tj)(1− u−k) = S(tj)Wtj(k) (4.35)

This claim also holds for the maturity. Hence, by defining Wtj(k) = 1− u−k we can

construct a new binomial tree of Wtj(k), k = 0, 1, . . . , j.

In Figure 4.13, if k ≥ 1 at tj and the stock price goes up to S(tj+1) = S(tj)u,

then at time tj+1 the power of u is k + 1. If the stock price goes down, the power

of u is k − 1. While when k = 0, the situation is different, which for the upward
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Figure 4.13: The lookback call option with float strike price

movement the power of u is 1, but the power of u for downward movement is still

0. As we can see here the binomial tree of Wtj(k) with the path, we can use the

NPI probabilities to evaluate the option. Here for n historical observations, and s

represents the number of times that the stock price went up in the previous time.

Then we can get the upper and lower probabilities of upward movement from Wtj(k)

to Wtj+1
(k + 1) as,

P (tj) =
s+ k + 1

n+ tj + 1
(4.36)

P (tj) =
s+ k

n+ tj + 1
(4.37)

Then we apply these NPI probabilities to each one step path. Based on the NPI

method, we can compute the expected value of W0(0), and based on the definition

of the look-back call option with float stock price. We know the option price is

S(0)W0(0). The backward method for each node can be formulated as :

The maximum buying price of the call option

V0 = S(0)W0(0)

W tj
(k) = B(tj, tj+1)

[
P (tj)W tj+1

(k + 1) + (1− P (tj))W tj+1
(k − 1)

]
(4.38)
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The minimum selling price of the call option

V0 = S(0)W0(0)

Wtj(k) = B(tj, tj+1)
[
P (tj)W tj+1

(k + 1) + (1− P (tj))W tj+1
(k − 1)

]
(4.39)

where B(tj, tj+1) is the discount factor from time tj to time tj+1.

Similarly, we can construct the tree for the look-back put option with float payoff

as well. By definition, the payoff of this kind of option is max
0≤i≤m

S(ti)− S(T ), where

max
0≤i≤m

S(ti) is the maximum stock price during the whole option life period. Then

using a function to represent this value at time tj is M(tj) = max
0≤i≤m

S(ti) = S(tj)u
−k.

The option value V (S(tj),M(tj), tj) depends on three factors, stock price, maximum

stock price and the time to maturity. Define the power of upward movement factor

u:

k = ln[S(tj)/M(tj)]/ ln(u) (4.40)

As we known, S(tj) is always less than or equal to M(tj), then k is a negative

integer belongs to the set of values {0, . . . ,−j}. Then we can rewrite the option

value as:

V (S(tj),M(tj), tj) = max
0≤i≤m

S(ti)− S(tj) = (u−k − 1)S(tj) = S(tj)Gtj(k) (4.41)

Define Gtj(k) = u−k − 1, then we construct a new binomial tree of G(k, tj).

In the tree, Figure 4.14, when k is negative and the stock price goes down at tj,

for the next time step the power of u is k− 1. Or if the stock price goes up at time

tj, the power of u is k + 1 at time tj+1. When k = 0, the downward movement will

change the k to k − 1, but upward movement won’t change the power of u. From

this monotone tree, we can use the NPI method to calculate the maximum buying

price and the minimum selling price of the option. Here n is the number of the

historical stock price, among them s stock prices go down. Then for each downward
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G1(0)

G1(−1)

G2(−2)

G3(−3)

G1(0)

G2(−1)

G3(−2)

G2(0)

G3(−1)

G3(0)

Figure 4.14: The lookback put option with float strike price

path, we have the upper and lower probabilities as:

P (tj) =
s− k + 1

n+ tj + 1
(4.42)

P (tj) =
s− k

n+ tj + 1
(4.43)

The backward method for each node can be formulated as :

The maximum buying price of the put option

V0 = S(0)G(0, 0)

Gtj
(k) = B(tj, tj+1)

[
(1− P (tj))Gtj+1

(k + 1) + P (tj)Gtj+1
(k − 1)

]
(4.44)

The minimum selling price of the put option

V0 = S(0)G(0, 0)

Gtj(k) = B(tj, tj+1)
[
(1− P (tj))Gtj+1

(k + 1) + P (tj)Gtj+1
(k − 1)

]
(4.45)
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Figure 4.15: The binomial tree of a look-back call option with the float strike price

Example 4.7

In this example, we use R program in Appendix B.6 to predict the value of a

look-back call option with the float strike price K = min
0≤i≤m

S(ti) derived from stock

with an initial stock price S0 = 20. Following the mathematical description for the

look-back call option, we first set up a binomial tree of Wtj(k) as Figure 4.15. In

the tree, there are three values at each node. Two values in the parenthesis are the

time steps t and the power of the upward movement factor k. The value outside

the parenthesis is the value of Wtj(k) at each node. After this discounted backward

evaluation method, we get the value W0(0) = 0.064, then we can calculate the option

price, which is V (0) = S0W0(0) = 20× 0.064 = 1.28.

4.5 Concluding remarks

The NPI method can be used in the evaluation of the exotic options, for the type

of option with a monotonic binomial tree the probability assignment of each path is

quite applicable and understandable, like the digital option and the barrier option.

For the options with the non-monotonic binomial tree, we can manipulate the payoff

definition and construct a monotonic binomial tree and use the NPI method lower

and upper probabilities to calculate the maximum buying option price and the

minimum selling option price as shown for the look-back options with the float
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strike price. Or we can also give the original tree a different probability assignment

in order to calculate the upper and lower expectations, which can be challenging

and appealing. Although we do not discuss the performance of the NPI option

pricing method for these three exotic options, we believe that the conclusion of

its performance is the same as the NPI method for vanilla options, which is the

NPI method performs better than the CRR model when the CRR model uses the

substantially wrong assumptions. There are still a lot of research topics about the

exotic option on the basis of the NPI method. One of them is to explore the NPI

method for more exotic options, like the Asian option [76], and the study of the NPI

performance is also of interest.



Chapter 5

Conclusion

In this thesis, we have applied Nonparametric Predictive Inference (NPI) to

a new area, the option pricing. To start the NPI method for option pricing at an

early stage, we developed the NPI method only focusing on the binomial tree model.

Using NPI for Bernoulli data, as reviewed in Chapter 1, we set up the pricing model

based on the NPI method not only for vanilla options but also some exotic options.

We first priced the European option by applying the NPI method to the model.

Instead of getting a precise expected option price, we got an interval of European

option prices, with upper and lower boundaries, called the minimum selling price and

the maximum buying price, respectively. The boundary prices are named according

to the trade preferences, and all the values in the interval are reasonable for this

option from the model prediction. Then any value greater than the upper bound is

appealing to sell, and any value less than the lower bound is appealing to buy. Then

we checked into a famous property in the classic theory of the European option:

the put-call parity. In the classic theory, this parity is only valid when there is no

arbitrage opportunity in the market. Although our prediction is imprecise indicating

arbitrage opportunity, the boundary prices still follow the put-call parity. From the

formula we know that the maximum buying price of a call option has an equilibrium

relationship with the minimum selling price of a put option, also applying to the

maximum buying price of a put option and the minimum selling price of a call
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option. These are following the explanation of the classic theory, that holding a

call option and selling a put option is equivalent to holding a forward contract with

the same strike price and maturity based on the same underlying asset. Finally,

the NPI method performance has been assessed by doing an analytical study of

trade between the NPI method and the CRR model in two extreme scenarios. In

Scenario 1, the CRR model is using the same information as the real market, while

in Scenario 2, the CRR model uses the wrong assumption. We did this study in

two ways both with and without the discount procedure. Excluding the discount

procedure shows the difference causing by the price method differences, which the

NPI prediction is never better than the CRR prediction in Scenario 1, but better

than the CRR perdition in Scenario 2. However, the loss of the NPI investor in

Scenario 1 can be reduced by enlarging the historical data. In Scenario 2, when

the difference between the real market probability and the risk-neutral probability

gets larger, the profit earned by the NPI investor raises as well. By adding the

discount procedure, we found out that an appropriate discount rate can reduce the

prediction error of the NPI method in Scenario 1 and it does not change the result

of NPI method performance in Scenario 2.

In Chapter 3, we set up the NPI pricing method for the American option. Differ-

ent from the European option, because of the early exercise feature, the NPI method

for American option pricing does not have a closed formula. Instead, we offered a

backward strategy for prediction and described it mathematically. After setting up

the pricing model, we presented that in our method the American option without

dividends is possible to be early exercise. We also gave the holding condition for

both put and call options. Then based on all the knowledge, we studied the stopping

time and the NPI method performance by simulation. Due to the different stopping

time between our method and the CRR model, the option payoff, and the option

price varies that influent the P&L of the NPI method in the performance study.

We picked the example of trade between the NPI method and the CRR model with
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entirely different stopping time to see the extreme case of the NPI method. Similar

to the European option, we also did this study in two extreme scenarios. It turns out

that the NPI person hardly gets profit from this trade in Scenario 1 but performs

very well in Scenario 2. This excellent performance is reflected from two aspects,

first the NPI prediction result guide the investor who uses the NPI method only to

take part in the smart trading position that has more chance to earn some money,

and in these wise trading position the P&L of the NPI method is better than the

ones in the first scenario. The influence of the number of historical data was also

developed in the examples, showing that a sufficient amount of historical data sup-

ports the NPI investor trades more wisely and earns more money. From the results,

it is also evident that a larger difference between the real market probability and the

risk-neutral probability helps the NPI investor beat the CRR investor in the trade.

Last but not least, we also presented the NPI method for some exotic options,

i.e., the digital option, the barrier option, and the look-back option. For the digital

option and the barrier option, the NPI application is straightforward, for the pay-

offs of these options are monotonic with the underlying asset price binomial tree.

Therefore, according to the option definition, the minimum selling price and the

maximum buying price is achieved by assigning the upper or the lower probabilities

to each movement path in the binomial tree. When it comes to the option having

non-monotonic payoffs, there are two ways we could deal with; one is manipulating

the binomial tree making monotonic payoffs, like what we did for the look-back

option with the float strike price. Or we assign the new imprecise probability to

the underlying asset price binomial tree, which is more challenging for future study

because we need to check its consistency and exchangeability.

A further topic of interest for further study in our method is whether or not

all historical data should be taken into account. It is better to do so if one can

safely assume that the future observations will be exchangeable with all the past

data. However, if one believes that there has been a considerable change in the
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data at some point in the past, it may be appropriate to restrict the historical

data to observations after such a change. We only consider the basic binomial tree

model as a simple first step of this research. This method is only used for ideal

model situations, but it underpins a range of more realistic models for which we

aim to investigate in the future, for instance, the trinomial model. We study the

NPI method only by comparing its performance in regard to another trader who

would use the CRR model, either with perfect or imperfect knowledge. Real world

scenarios with multiple traders are also interesting for further research. It is also

interesting to investigate the application of the NPI method for option pricing in

real markets where it may also be possible to improve the method by creating hybrid

strategies based on multiple pricing methods. Also, NPI for real-valued data can be

developed for option pricing in real-time with continuous-valued increment. Then it

is interesting to study aspects of the investigation of the discrete tree model to the

continuous model.



Appendix A

Financial Terminology

The financial definition are from the textbook, Options, Futures, and Other Deriva-

tives, written by Hull [45]

• All-or-Nothing Option An option has the a predetermined value as it

payoff if the option is exercised.

• American Option A vanilla option which is able to be exercised before its

maturity.

• Arbitrage A trading strategy that an investor could take when financial

products are mispriced, and a certain profit can be gain through opposite

trading action on the same product or on more products but should have the

same value.

• Asset-or-Nothing Option An option has the value equal to the asset price

as its payoff if the option is exercised.

• At the Money option An option in which the strike price equals the un-

derlying asset price.

• Backward Strategy A procedure for working from the end of a tree to its

beginning in order to value an option.
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• Barrier Option An option whose payoff depends on if the path of the un-

derlying asset has reached a barrier.

• Call Option An option that option buyer agree to buy the underlying asset

at a certain price by a settled date, and its payoff is [S −K]+.

• Derivative An financial product whose prices depends on the price of another

asset.

• Digital Option An option with a discontinuous payoff; for example, a all-

or-nothing option or a asset-or-nothing option.

• Early Exercise The exercise time is before the maturity date.

• European Option An option that can only be exercised at its maturity.

• Exotic Option A non-vanilla option.

• Forward A financial instrument that obligates the holder to buy or sell an

asset for a predermined price at a predetermined future time.

• Hedge A trading action that is designed to eliminate or reduce risk.

• Instant Value Either a call option value where the asset price minus the

strike price or a put option value where the strike price minus the asset price.

• In the Money Option The call option where the asset price is greater than

the strike price, or the put option where the asset price is less than the strike

price.

• Long Position A position an investor can be in through purchasing the

asset.

• Look-back Option An option has the payoff that is depend on the maximum

or minimum of the asset price achieved during a specific period of time.
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• Option One of the financial derivatives designed to let the buyer has the right

to buy or sell the underlying asset at a certain price by the certain date.

• Out of the Money Option The call option where the asset price is less

than the strike price, or the put option where the asset price is greater than

the strike price.

• Payoff The value gained by the buyer of an option or other derivatives at

the end of its life.

• Put Option An option the holder agree to sell the underlying asset at a

certain price by a certain date, and its payoff is [K − S]+.

• Risk-free Rate The interest rate earned from the asset without any risk.

• Risk Neutral Valuation The valuation of an option or other products in

the derivative market under the assumption of risk neutral market.

• Risk Neutral Market A market that investors are assumed to require no

extra return on average for bearing risks.

• Short Position A position that the holder decides to be in by selling the

asset.

• Spot Price The price for immediate delivery.

• Strike Price The price at which the underlying asset may be bought or sold

at the exercise time.

• Time Value The value of an option arising from the time left to maturity.
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R code

B.1 American option

##This file is to generate the binomial tree of the American

option.

##Use function treedot, where Asset is the initial stock price,

##u is the up factor, d is the down factor,

##IntRate is the discount rate,

##Strike is the strike price, NoSteps is the future time steps,

##n is the historical data, s is the successful historical data.

##Then type in the storage path in the terminal with graphviz

installed.

#instant payoff of the American option

payoff.vanilla.call <- function(Asset, Strike) {

return(max(0, Asset - Strike))

}

payoff.vanilla.put <- function(Asset, Strike) {

return(max(0, Strike - Asset))

}
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# Generate a binomial lattice for American option.

# This function is modified based on the NPI method according to

the function written by Ollie's Universe.

# web:http://www.frolovs.me/

genlattice.american <-

function(Asset, u, d, IntRate, Strike, NoSteps, Payoff, n, s,

OptionType) {

OptionPosition <-

readline(prompt = "Enter option investor 's position: buy 

or sell:")

# The number of tree nodes to process.

count <- sum(1:(NoSteps + 1))

# This data frame will store asset and option prices.

# The mapping from tree node (i,j) to linear index

# inside the data frame will have to be computed.

# The early exercise flag is also stored.

X <- data.frame(matrix(NA, nrow = count, ncol = 3))

names(X) <- c("asset", "option", "exercise")

#Option price discount factor.

#Here the IntRate is the expected stock return in the thesis

DiscountFactor <- 1 / (1 + IntRate)

#p is the NPI boundary probability

p <- 0

# Compute the asset and option prices, starting from the

last node of the tree, which is its bottom right corner

when viewed as a graph.

# Work up and backwards.

for (i in NoSteps:0) {

for (j in i:0) {
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AssetCurrent <- Asset * u ^ (i - j) * d ^ j

X$asset[count] <- AssetCurrent

#Compute the payoff directly for the last step's nodes,

otherwise use a formula.

if (i == NoSteps) {

X$option[count] <- Payoff(AssetCurrent , Strike)

X$exercise[count] <- FALSE

} else {

#The up and down jump factors

up <- X$option[sum(1:(i + 1), j, 1)]

down <- X$option[sum(1:(i + 1), j + 1, 1)]

if ((OptionType == "Call" &

OptionPosition == "buy") |

(OptionType == "Put" & OptionPosition == "sell"))

{

p <- (s + i - j) / (n + i + 1)# the lower

probability

} else if ((OptionType == "Call" &

OptionPosition == "sell") |

(OptionType == "Put" &

OptionPosition == "buy")) {

p <- (s + i - j + 1) / (n + i + 1)# the upper

probability

}

#Possible option values when discounted or when early

exercise is applied.

V <- DiscountFactor * (p * up + (1 - p) * down)

V.early <- Payoff(AssetCurrent , Strike)

# The greatest of two possible values is stored

X$option[count] <- max(V, V.early)
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#Should the option be exercised early?

X$exercise[count] <- (V.early > V)

}

count <- count - 1

}

}

return(X)

}

#Genlattice family functions:different lattice by the option

type: call or put

genlattice.vanilla.american.call <-

function(Asset, u, d, IntRate, Strike, NoSteps, n, s,

OptionType = OptionType) {

return (

genlattice.american( Asset = Asset, u = u, d = d, IntRate

= IntRate, Strike = Strike, NoSteps = NoSteps, Payoff =

payoff.vanilla.call, n = n, s = s, OptionType =

OptionType )

)

}

genlattice.vanilla.american.put <-

function(Asset, u, d, IntRate, Strike, NoSteps, n, s,

OptionType = OptionType) {

return (

genlattice.american( Asset = Asset, u = u, d = d, IntRate

= IntRate, Strike = Strike, NoSteps = NoSteps, Payoff =

payoff.vanilla.put, n = n, s = s, OptionType =

OptionType)
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)

}

#Generates a graph specification that can be fed into graphviz.

#Input: the binomial lattice produced by one of genlattice

family functions.

#This function was borrowed Rory Winston:

#http://www.theresearchkitchen.com/archives/738

dotlattice <- function(S, digits = 2) {

shape <- "plaintext"

cat("digraph G {", "\n", sep = "")

cat("node[shape=", shape, "];", "\n", sep = "")

cat("rankdir=LR;", "\n")

cat("edge[arrowhead=none];", "\n")

# Create a dot node for each element in the lattice

for (i in 1:nrow(S)) {

x <- round(S$asset[i], digits = digits)

y <- round(S$option[i], digits = digits)

# Detect the American tree and draw accordingly

early.exercise <- ""

if (("exercise" %in% colnames(S)) && S$exercise[i]) {

early.exercise <- "shape=oval,"

}

cat("node", i, "[", early.exercise, "label=\"", x, ", ", "("

, y, ")",  "\"];", "\n", sep = "")

}

# The number of levels in a binomial lattice of length L is
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`$\frac{\sqrt{8N+1}-1}{2}$`

L <- ((sqrt(8 * nrow(S) + 1) - 1) / 2 - 1)

k <- 1

for (i in 1:L) {

tabs <- rep("\t", i - 1)

j <- i

while (j > 0) {

cat("node", k, "->", "node", (k + i), ";\n", sep = "")

cat("node", k, "->", "node", (k + i + 1), ";\n", sep = "")

k <- k + 1

j <- j - 1

}

}

cat("}", sep = "")

}

#Plot the binomial tree of the American option in file lattice.

dot.

treedot <- function(Asset, u, d, IntRate, Strike, NoSteps, n, s)

{

OptionType <- readline(prompt = "Enter option type: Call or 

Put:")

if (OptionType == "Call") {

x <- genlattice.vanilla.american.call( Asset = Asset, u = u

, d = d, IntRate = IntRate, Strike = Strike, NoSteps =

NoSteps, n = n, s = s, OptionType = OptionType)

} else if (OptionType == "Put") {

x <- genlattice.vanilla.american.put( Asset = Asset, u = u,

d = d, IntRate = IntRate, Strike = Strike, NoSteps =

NoSteps, n = n, s = s, OptionType = OptionType)

}
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y <- capture.output(dotlattice(x, digits = 3))

cat(y, file = "lattice.dot")

}

#Terminal: dot -Tpng -o binomial -tree-american -call-1.png /...

the path where you save lattice.dot

B.2 American all-or-nothing digital option

##This file is to generate the binomial tree of the American all

-or-nothing digital option.

##Use function treedot, where Asset is the initial stock price,

##u is the up factor, d is the down factor,

##IntRate is the discount rate,

##Strike is the strike price, NoSteps is the future time steps,

##n is the historical data, s is the successful historical data.

##PX is the constant payoff

##Then type in the storage path in the terminal with graphviz

installed.

#The payoff for call and put options.

payoff.vanilla.call <- function(Asset, Strike, PX) {

if (Asset - Strike > 0) {

pay <- PX

} else{

pay <- 0

}

return(pay)

}
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payoff.vanilla.put <- function(Asset, Strike, PX) {

if (Strike - Asset > 0) {

pay <- PX

} else {

pay <- 0

}

return(pay)

}

# Generate a binomial lattice for the digital option.

genlattice.american <- function(Asset, u, d,IntRate, Strike,

NoSteps, Payoff, n, s, PX, OptionType) {

OptionPosition <-readline(prompt = "Enter option investor's 

position: buy or sell:")

# The number of tree nodes to process.

count <- sum(1:(NoSteps + 1))

# This data frame will store asset and option prices.

# The mapping from tree node (i,j) to linear index

# inside the data frame will have to be computed.

# The early exercise flag is also stored.

X <- data.frame(matrix(NA, nrow = count, ncol = 3))

names(X) <- c("asset", "option", "exercise")

# Option price discount factor.

#Here the IntRate is the expected return for only onestep

DiscountFactor <- 1 / (1 + IntRate)

#The NPI probability.

p <- 0

# Compute the asset and option prices, starting from the

last node of the tree, which is its bottom right corner
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when viewed as a graph.

# Work up and backwards.

for (i in NoSteps:0) {

for (j in i:0) {

AssetCurrent <- Asset * u ^ (i - j) * d ^ j

X$asset[count] <- AssetCurrent

# Compute the payoff directly for the last step's nodes,

otherwise use a formula.

if (i == NoSteps) {

X$option[count] <- Payoff(AssetCurrent , Strike, PX)

X$exercise[count] <- FALSE

} else {

#The up and down jump factors

up <- X$option[sum(1:(i + 1), j, 1)]

down <- X$option[sum(1:(i + 1), j + 1, 1)]

if ((OptionType == "Call" &

OptionPosition == "buy") |

(OptionType == "Put" & OptionPosition == "sell"))

{

p <- (s + i - j) / (n + i + 1)# the lower

probability

} else if ((OptionType == "Call" &

OptionPosition == "sell") |

(OptionType == "Put" &

OptionPosition == "buy")) {

p <- (s + i - j + 1) / (n + i + 1)# the upper

probability

}

# Possible option values when discounted or when early

exercise is applied

V <- DiscountFactor * (p * up + (1 - p) * down)
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V.early <- Payoff(AssetCurrent , Strike, PX)

# The greatest of two possible values is stored

X$option[count] <- max(V, V.early)

# Should the option be exercised early?

X$exercise[count] <- (V.early > V)

}

count <- count - 1

}

}

return(X)

}

#Genlattice family functions:

#different lattice by the option type:call or put

genlattice.vanilla.american.call <- function(Asset, u, d,

IntRate, Strike, NoSteps, n, s, PX, OptionType=OptionType)

{

return (genlattice.american(Asset = Asset, u = u, d = d,

IntRate = IntRate, Strike = Strike, NoSteps = NoSteps,

Payoff = payoff.vanilla.call, n = n, s = s, PX = PX,

OptionType = OptionType))

}

genlattice.vanilla.american.put <- function(Asset, u, d, IntRate

, Strike, NoSteps, n, s, PX, OptionType=OptionType) {

return (genlattice.american(Asset = Asset, u = u, d = d,

IntRate = IntRate, Strike = Strike, NoSteps = NoSteps,

Payoff = payoff.vanilla.put, n = n, s = s, PX = PX,

OptionType = OptionType))
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}

# Generates a graph specification that can be fed into graphviz.

# Input: the binomial lattice produced

#by one of genlattice family functions.

dotlattice <- function(S, digits = 2) {

shape <- "plaintext"

cat("digraph G {", "\n", sep = "")

cat("node[shape=", shape, "];", "\n", sep = "")

cat("rankdir=LR;", "\n")

cat("edge[arrowhead=none];", "\n")

# Create a dot node for each element in the lattice

for (i in 1:nrow(S)) {

x <- round(S$asset[i], digits = digits)

y <- round(S$option[i], digits = digits)

# Detect the American tree and draw accordingly

early.exercise <- ""

if (("exercise" %in% colnames(S)) && S$exercise[i]) {

early.exercise <- "shape=oval,"

}

cat("node", i, "[", early.exercise, "label=\"", x, ", ","(", 

y,")", "\"];", "\n", sep="")

}

# The number of levels in a binomial lattice of length L is

`$\frac{\sqrt{8N+1}-1}{2}$`

L <- ((sqrt(8 * nrow(S) + 1) - 1) / 2 - 1)
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k <- 1

for (i in 1:L) {

tabs <- rep("\t", i - 1)

j <- i

while (j > 0) {

cat("node", k, "->", "node", (k + i), ";\n", sep = "")

cat("node", k, "->", "node", (k + i + 1), ";\n", sep = "")

k <- k + 1

j <- j - 1

}

}

cat("}", sep = "")

}

#Plot the binomial tree of the Ameican all-or-nothing digital

option in file lattice.dot.

treedot<-function(Asset, u, d, IntRate, Strike, NoSteps, n, s,

PX) {

OptionType <- readline(prompt = "Enter option type: Call or 

Put:")

if (OptionType == "Call") {

x <- genlattice.vanilla.american.call(Asset = Asset, u = u,

d = d, IntRate = IntRate, Strike = Strike, NoSteps =

NoSteps, n = n, s = s, PX = PX, OptionType = OptionType)

} else if (OptionType == "Put") {

x <- genlattice.vanilla.american.put(Asset = Asset, u = u, d

= d, IntRate = IntRate, Strike = Strike, NoSteps =

NoSteps, n = n, s = s, PX = PX, OptionType = OptionType)

}

y <- capture.output(dotlattice(x, digits = 3))

cat(y, file = "lattice.dot")

}
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# Terminal: dot -Tpng -o binomial-tree-american -call-1.png /...

the path where you save lattice.dot

B.3 American asset-or-nothing digital option

##This file is to generate the binomial tree of the American

asset-or-nothing digital option.

##Use function treedot, where Asset is the initial stock price,

##u is the up factor, d is the down factor,

##IntRate is the discount rate,

##Strike is the strike price, NoSteps is the future time steps,

##n is the historical data, s is the successful historical data.

##Then type in the storage path in the terminal with graphviz

installed.

#The payoff for call and put options.

payoff.vanilla.call <- function(Asset, Strike) {

if (Asset - Strike > 0) {

pay <- Asset

} else{

pay <- 0

}

return(pay)

}

payoff.vanilla.put <- function(Asset, Strike) {

if (Strike - Asset > 0) {

pay <- Asset

} else {

pay <- 0

}

return(pay)
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}

# Generate a binomial lattice for the American asset-or-nothing

option.

genlattice.american <-

function(Asset, u, d, IntRate, Strike, NoSteps, Payoff, n, s,

OptionType) {

OptionPosition <-

readline(prompt = "Enter option investor 's position: buy 

or sell:")

# The number of tree nodes to process.

count <- sum(1:(NoSteps + 1))

# This data frame will store asset and option prices.

# The mapping from tree node (i,j) to linear index

# inside the data frame will have to be computed.

# The early exercise flag is also stored.

X <- data.frame(matrix(NA, nrow = count, ncol = 3))

names(X) <- c("asset", "option", "exercise")

# Option price discount factor.

#Here the IntRate is the expected return for only onestep

DiscountFactor <- 1 / (1 + IntRate)

#The NPI probability.

p <- 0

# Compute the asset and option prices, starting from the

last node of the tree, which is its bottom right corner

when viewed as a graph.

# Work up and backwards.

for (i in NoSteps:0) {
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for (j in i:0) {

AssetCurrent <- Asset * u ^ (i - j) * d ^ j

X$asset[count] <- AssetCurrent

# Compute the payoff directly for the last step's nodes,

otherwise use a formula.

if (i == NoSteps) {

X$option[count] <- Payoff(AssetCurrent , Strike)

X$exercise[count] <- FALSE

} else {

#The up and down jump factors

up <- X$option[sum(1:(i + 1), j, 1)]

down <- X$option[sum(1:(i + 1), j + 1, 1)]

if ((OptionType == "Call" &

OptionPosition == "buy") |

(OptionType == "Put" & OptionPosition == "sell"))

{

p <- (s + i - j) / (n + i + 1) # the lower

probability

} else if ((OptionType == "Call" &

OptionPosition == "sell") |

(OptionType == "Put" &

OptionPosition == "buy")) {

p <- (s + i - j + 1) / (n + i + 1) # the upper

probability

}

# Possible option values when discounted or when early

exercise is applied

V <- DiscountFactor * (p * up + (1 - p) * down)

V.early <- Payoff(AssetCurrent , Strike)

# The greatest of two possible values is stored
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X$option[count] <- max(V, V.early)

# Should the option be exercised early?

X$exercise[count] <- (V.early > V)

}

count <- count - 1

}

}

return(X)

}

#Genlattice family functions:different lattice by the option

type:

#call or put

genlattice.vanilla.american.call <-

function(Asset, u, d, IntRate, Strike, NoSteps, n, s,

OptionType = OptionType) {

return (

genlattice.american( Asset = Asset, u = u, d = d, IntRate

= IntRate, Strike = Strike, NoSteps = NoSteps, Payoff

= payoff.vanilla.call, n = n, s = s, OptionType =

OptionType)

)

}

genlattice.vanilla.american.put <-

function(Asset, u, d, IntRate, Strike, NoSteps, n, s,

OptionType = OptionType) {

return (

genlattice.american(Asset = Asset, u = u, d = d, IntRate =

IntRate, Strike = Strike, NoSteps = NoSteps, Payoff =

payoff.vanilla.put, n = n, s = s, OptionType =
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OptionType)

)

}

# Generates a graph specification that can be fed into graphviz.

# Input: the binomial lattice produced by

# one of genlattice family functions.

dotlattice <- function(S, digits = 2) {

shape <- "plaintext"

cat("digraph G {", "\n", sep = "")

cat("node[shape=", shape, "];", "\n", sep = "")

cat("rankdir=LR;", "\n")

cat("edge[arrowhead=none];", "\n")

# Create a dot node for each element in the lattice

for (i in 1:nrow(S)) {

x <- round(S$asset[i], digits = digits)

y <- round(S$option[i], digits = digits)

# Detect the American tree and draw accordingly

early.exercise <- ""

if (("exercise" %in% colnames(S)) && S$exercise[i]) {

early.exercise <- "shape=oval,"

}

cat("node", i, "[", early.exercise, "label=\"", x, ", ", "("

, y, ")", "\"];", "\n", sep = "")

}

# The number of levels in a binomial lattice of length L is

`$\frac{\sqrt{8N+1}-1}{2}$`
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L <- ((sqrt(8 * nrow(S) + 1) - 1) / 2 - 1)

k <- 1

for (i in 1:L) {

tabs <- rep("\t", i - 1)

j <- i

while (j > 0) {

cat("node", k, "->", "node", (k + i), ";\n", sep = "")

cat("node", k, "->", "node", (k + i + 1), ";\n", sep = "")

k <- k + 1

j <- j - 1

}

}

cat("}", sep = "")

}

# Plot the binomial tree of the Ameican all-or-nothing digital

option in file lattice.dot.

treedot <- function(Asset, u, d, IntRate, Strike, NoSteps, n, s)

{

OptionType <- readline(prompt = "Enter option type: Call or 

Put:")

if (OptionType == "Call") {

x <-

genlattice.vanilla.american.call(Asset = Asset, u = u, d =

d, IntRate = IntRate, Strike = Strike,

NoSteps = NoSteps, n = n, s = s, OptionType = OptionType

)

} else if (OptionType == "Put") {

x <-

genlattice.vanilla.american.put(Asset = Asset, u = u, d =

d, IntRate = IntRate, Strike = Strike, NoSteps =
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NoSteps, n = n, s = s, OptionType = OptionType)

}

y <- capture.output(dotlattice(x, digits = 3))

cat(y, file = "lattice.dot")

}

# Terminal: dot -Tpng -o binomial-tree-american -call-1.png /...

the path where you save lattice.dot

B.4 Knock up-and-out barrier option

##This is the R code for knock up and out option

##Use function treedot, where Asset is the initial stock price,

##u is the up factor, d is the down factor,

##IntRate is the discount rate,

##Strike is the strike price, NoSteps is the future time steps,

##n is the historical data, s is the successful historical data.

##B is the barrier value.

##Then type in the storage path in the terminal with graphviz

installed.

# The payoff for call and put options.

payoff.vanilla.call <- function(Asset, Strike) {

pay <- max(Asset - Strike, 0)

return(pay)

}

payoff.vanilla.put <- function(Asset, Strike) {

pay <- max(Strike - Asset, 0)

return(pay)

}
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# Generate a binomial lattice for the knock up and out option.

genlattice.american <-

function(Asset, u, d, IntRate, Strike, NoSteps, Payoff, n, s,

OptionType , B) {

OptionPosition <-

readline(prompt = "Enter option investor 's position: buy 

or sell:")

# The number of tree nodes to process.

count <- sum(1:(NoSteps + 1))

# This data frame will store asset and option prices.

# The mapping from tree node (i,j) to linear index

# inside the data frame will have to be computed.

# The early exercise flag is also stored.

X <- data.frame(matrix(NA, nrow = count, ncol = 3))

names(X) <- c("asset", "option", "exercise")

# Option price discount factor.

# Here the IntRate is the expected return for only onestep.

DiscountFactor <- 1 / (1 + IntRate)

#The NPI probability.

p <- 0

# Compute the asset and option prices, starting from the

last node of the tree, which is its bottom right corner

when viewed as a graph.

# Work up and backwards.

for (i in NoSteps:0) {

for (j in i:0) {

AssetCurrent <- Asset * u ^ (i - j) * d ^ j

X$asset[count] <- AssetCurrent
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# Compute the payoff directly for the last step's nodes,

otherwise use a formula.

if (i == NoSteps) {

#Check the last maturity stock price reaching the

barrier or not.

if (X$asset[count] < B) {

X$option[count] <- Payoff(AssetCurrent , Strike)

X$exercise[count] <- "FALSE"

} else{

X$option[count] <- 0

if (Payoff(AssetCurrent , Strike) != 0) {

X$exercise[count] <- "TRUE"

} else{

X$exercise[count] <- "FALSE"

}

}

} else {

# The up and down jump factors

up <- X$option[sum(1:(i + 1), j, 1)]

down <- X$option[sum(1:(i + 1), j + 1, 1)]

if (X$asset[count] < B) {

if ((OptionType == "Call" &

OptionPosition == "buy") |

(OptionType == "Put" & OptionPosition == "sell")

) {

p <- (s + i - j) / (n + i + 1)

} else if ((OptionType == "Call" &

OptionPosition == "sell") |

(OptionType == "Put" & OptionPosition ==

"buy")) {

p <- (s + i - j + 1) / (n + i + 1)
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}

X$option[count] <- DiscountFactor * (p * up + (1 - p

) * down)

X$exercise[count] <- "FALSE"

} else{

X$option[count] <- 0

#check the stock price reaching the barrier or not

if (up != 0 || down != 0) {

X$exercise[count] <- "TRUE"

}

else {

X$exercise[count] <- "FALSE"

}

}

}

count <- count - 1

}

}

return(X)

}

#Genlattice family functions:

#different lattice by the option type:call or put

genlattice.vanilla.american.call <-

function(Asset, u, d, IntRate, Strike, NoSteps, n, s,

OptionType = OptionType , B) {

return (

genlattice.american(Asset = Asset, u = u, d = d, IntRate =

IntRate, Strike = Strike, NoSteps = NoSteps, Payoff =

payoff.vanilla.call, n = n, s = s, OptionType =

OptionType , B = B)

)
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}

genlattice.vanilla.american.put <-

function(Asset, u, d, IntRate, Strike, NoSteps, n, s,

OptionType = OptionType , B) {

return (

genlattice.american(Asset = Asset, u = u, d = d, IntRate =

IntRate, Strike = Strike, NoSteps = NoSteps, Payoff =

payoff.vanilla.put, n = n, s = s, OptionType =

OptionType , B = B)

)

}

# Generates a graph specification that can be fed into graphviz.

# Input: the binomial lattice produced

# by one of genlattice family functions.

dotlattice <- function(S, digits = 2) {

shape <- "plaintext"

cat("digraph G {", "\n", sep = "")

cat("node[shape=", shape, "];", "\n", sep = "")

cat("rankdir=LR;", "\n")

cat("edge[arrowhead=none];", "\n")

# Create a dot node for each element in the lattice

for (i in 1:nrow(S)) {

x <- round(S$asset[i], digits = digits)

y <- round(S$option[i], digits = digits)

# Detect the American tree and draw accordingly

early.exercise <- ""

if (S$exercise[i] == "TRUE") {

early.exercise <- "shape=box,"
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}

if (i == 1) {

cat("node", i, "[", early.exercise, "label=\"", x, ", ", "

(", y, ")", "\"];", "\n", sep = "")

} else{

cat("node", i, "[", early.exercise, "label=\"", x, "\"];",

"\n", sep = "")

}

}

# The number of levels in a binomial lattice of length L is

`$\frac{\sqrt{8N+1}-1}{2}$`

L <- ((sqrt(8 * nrow(S) + 1) - 1) / 2 - 1)

k <- 1

for (i in 1:L) {

tabs <- rep("\t", i - 1)

j <- i

while (j > 0) {

cat("node", k, "->", "node", (k + i), ";\n", sep = "")

cat("node", k, "->", "node", (k + i + 1), ";\n", sep = "")

k <- k + 1

j <- j - 1

}

}

cat("}", sep = "")

}

#Plot the binomial tree of the Ameican all-or-nothing digital

option in file lattice.dot.

treedot <- function(Asset, u, d, IntRate, Strike, NoSteps, n, s,

B) {

OptionType <- readline(prompt = "Enter option type: Call or 



B.5. Knock up-and-in barrier option 210

Put:")

if (OptionType == "Call") {

x <-

genlattice.vanilla.american.call(Asset = Asset, u = u, d =

d, IntRate = IntRate, Strike = Strike, n = n, s = s,

OptionType = OptionType , B = B)

} else if (OptionType == "Put") {

x <-

genlattice.vanilla.american.put(Asset = Asset, u = u, d =

d, IntRate = IntRate, Strike = Strike, NoSteps =

NoSteps, n = n, s = s, OptionType = OptionType , B = B)

}

y <- capture.output(dotlattice(x, digits = 3))

cat(y, file = "lattice.dot")

}

# Terminal: dot -Tpng -o binomial-tree-american -call-1.png /...

the path where you save lattice.dot

B.5 Knock up-and-in barrier option

##This file is to generate the binomial tree of the knock up and

in option.

##Use function treedot, where Asset is the initial stock price,

##u is the up factor, d is the down factor,

##IntRate is the discount rate,

##Strike is the strike price, NoSteps is the future time steps,

##n is the historical data, s is the successful historical data.

##B is the barrier.

##Then type in the storage path in the terminal with graphviz

installed.

# The payoff for call and put knock up and in options.



B.5. Knock up-and-in barrier option 211

payoff.vanilla.call <- function(Asset, Strike) {

pay <- max(Asset - Strike, 0)

return(pay)

}

payoff.vanilla.put <- function(Asset, Strike) {

pay <- max(Strike - Asset, 0)

return(pay)

}

# European option option pricing for the first node reaching the

barrier.

EUoption <-

function(S0, K, u, d, n, s, m, OptionType , IntRate,

OptionPosition) {

if (OptionType == "Call") {

kstar <- (log(K) - log(S0) - m * log(d)) / (log(u) - log(d

))

kstarPlus <- as.integer(kstar) + 1

k <- c(kstarPlus:m)

if (OptionPosition == "buy") {

option.value <-

choose(n + m, m) ^ (-1) * sum((u ^ k * d ^ (m - k) * S

0 - K) * choose(s + k - 1, k) *choose(n - s + m - k

, m - k)) * (1 + IntRate) ^ (-m)

} else if (OptionPosition == "sell") {

option.value <-

choose(n + m, m) ^ (-1) * sum((u ^ k * d ^ (m - k) * S

0 - K) * choose(s +k, k) *choose(n - s + m - k - 1,

m - k)) * (1 + IntRate) ^ (-m)

}

} else if (OptionType == "Put") {

kstar <- (log(K) - log(S0) - m * log(d)) / (log(u) - log(d
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))

kstarMinus <- as.integer(kstar)

k <- c(0:kstarMinus)

if (OptionPosition == "buy") {

option.value <-

choose(n + m, m) ^ (-1) * sum((K - u ^ k * d ^ (m - k)

* S0) * choose(s + k, k) *choose(n - s + m - k - 1

, m - k)) * (1 + IntRate) ^ (-m)

} else if (OptionPosition == "sell") {

option.value <-

choose(n + m, m) ^ (-1) * sum((K - u ^ k * d ^ (m - k)

* S0) * choose(s +k - 1, k) *choose(n - s + m - k,

m - k)) * (1 + IntRate) ^ (-m)

}

}

return(option.value)

}

# Generate a binomial lattice for knock up and in option.

genlattice.american <-

function(Asset, u, d, IntRate, Strike, NoSteps, Payoff, n, s,

OptionType , B) {

OptionPosition <- readline(prompt = "Enter option investor's

 position: buy or sell:")

# The number of tree nodes to process.

count <- sum(1:(NoSteps + 1))

# This data frame will store asset and option prices.

# The mapping from tree node (i,j) to linear index

# inside the data frame will have to be computed.

# "option" stores the first node reaching the barrier

X <- data.frame(matrix(NA, nrow = count, ncol = 3))

names(X) <- c("asset", "option", "price")
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# Option price discount factor. Here the IntRate is the

expected return for only onestep

DiscountFactor <- 1 / (1 + IntRate)

#The NPI probability.

p <- 0

#Set up stock price tree

for (i in NoSteps:0) {

for (j in i:0) {

AssetCurrent <- Asset * u ^ (i - j) * d ^ j

X$asset[count] <- AssetCurrent

count <- count - 1

}

}

#Decide the which node is the first node reaching the

barrier.

l <- 0

for (i in 0:NoSteps) {

for (j in l:i) {

g <- (1 + i) * i / 2 + j + 1

if (X$asset[g] >= B) {

l = j + 1

if (i == NoSteps) {

if (OptionType == "Call") {

X$option[g] <- payoff.vanilla.call(X$asset[g],

Strike)

} else if (OptionType == "Put") {

X$option[g] <- payoff.vanilla.put(X$asset[g],

Strike)

}

} else{
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X$option[g] <- EUoption( X$asset[g], Strike, u, d,

n + i, s + i - j, NoSteps - i, OptionType ,

IntRate, OptionPosition)

}

} else{

X$option[g] <- 0

}

}

if (l == i + 1 && l != 0) {

break

}

}

X$option[is.na(X$option)] <- 0

count <- sum(1:(NoSteps + 1))

# Compute the asset and option prices, starting from the

last node of the tree, which is its bottom right corner

when viewed as a graph.

# Work up and backwards.

for (i in NoSteps:0) {

for (j in i:0) {

if (i == NoSteps) {

X$price[count] <- X$option[count]

} else {

up <- X$price[sum(1:(i + 1), j, 1)]

down <- X$price[sum(1:(i + 1), j + 1, 1)]

if ((OptionType == "Call" &

OptionPosition == "buy") |

(OptionType == "Put" & OptionPosition == "sell"))

{

p <- (s + i - j) / (n + i + 1)

} else if ((OptionType == "Call" &

OptionPosition == "sell") |
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(OptionType == "Put" & OptionPosition == "

buy")) {

p <- (s + i - j + 1) / (n + i + 1)

}

#Justify the node is to be calculated as european

option or not

if (X$option[count] != 0) {

X$price[count] <- X$option[count]

} else{

X$price[count] <- DiscountFactor * (p * up + (1 - p)

* down)

}

}

count <- count - 1

}

}

return(X)

}

#Genlattice family functions:

#different lattice by the option type:call or put

genlattice.vanilla.american.call <- function(Asset, u, d,

IntRate, Strike, NoSteps, n, s, OptionType = OptionType , B) {

return (

genlattice.american( Asset = Asset, u = u, d = d, IntRate

= IntRate, Strike = Strike, NoSteps = NoSteps, Payoff =

payoff.vanilla.call, n = n, s = s, OptionType =

OptionType , B = B)

)

}

genlattice.vanilla.american.put <-
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function(Asset, u, d, IntRate, Strike, NoSteps, n, s,

OptionType = OptionType , B) {

return (

genlattice.american( Asset = Asset, u = u, d = d,

IntRate = IntRate, Strike = Strike, NoSteps = NoSteps

, Payoff = payoff.vanilla.put, n = n, s = s, OptionType

= OptionType , B = B)

)

}

# Generates a graph specification that can be fed into graphviz.

# Input: the binomial lattice produced

#by one of genlattice family functions.

dotlattice <- function(S, digits = 2) {

shape <- "plaintext"

cat("digraph G {", "\n", sep = "")

cat("node[shape=", shape, "];", "\n", sep = "")

cat("rankdir=LR;", "\n")

cat("edge[arrowhead=none];", "\n")

# Create a dot node for each element in the lattice

for (i in 1:nrow(S)) {

x <- round(S$asset[i], digits = digits)

y <- round(S$price[i], digits = digits)

# Detect the American tree and draw accordingly

early.exercise <- ""

if (S$option[i] != 0) {

early.exercise <- "shape=box,"

}

if (i == 1) {
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cat("node", i, "[", early.exercise, "label=\"", x, ", ", "

(", y, ")", "\"];", "\n", sep = "")

} else{

cat("node", i, "[", early.exercise, "label=\"", x, "\"];",

"\n", sep = "")

}

}

# The number of levels in a binomial lattice of length L is

`$\frac{\sqrt{8N+1}-1}{2}$`

L <- ((sqrt(8 * nrow(S) + 1) - 1) / 2 - 1)

k <- 1

for (i in 1:L) {

tabs <- rep("\t", i - 1)

j <- i

while (j > 0) {

cat("node", k, "->", "node", (k + i), ";\n", sep = "")

cat("node", k, "->", "node", (k + i + 1), ";\n", sep = "")

k <- k + 1

j <- j - 1

}

}

cat("}", sep = "")

}

#Plot the binomial tree of the knock up and in option in file

lattice.dot.

treedot <- function(Asset, u, d, IntRate, Strike, NoSteps, n, s,

B) {

OptionType <- readline(prompt = "Enter option type: Call or 

Put:")
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if (OptionType == "Call") {

x <- genlattice.vanilla.american.call( Asset = Asset, u = u,

d = d, IntRate = IntRate, Strike = Strike, NoSteps =

NoSteps, n = n, s = s, OptionType = OptionType , B = B)

} else if (OptionType == "Put") {

x <- genlattice.vanilla.american.put(Asset = Asset, u = u, d

= d, IntRate = IntRate, Strike = Strike, NoSteps =

NoSteps, n = n, s = s, OptionType = OptionType , B = B)

}

y <- capture.output(dotlattice(x, digits = 3))

cat(y, file = "lattice.dot")

}

# Terminal: dot -Tpng -o binomial-tree-american -call-1.png /...

the path where you save lattice.dot

B.6 Look-back call option

##This file is to generate the binomial tree of the look-back

call option

##with float strike price.

##Use function treedot, where Asset is the initial stock price,

##u is the up factor,

##IntRate is the discount rate,

##NoSteps is the future time steps,

##n is the historical data, s is the successful historical data.

##Then type in the storage path in the terminal with graphviz

installed.

#The value of $W_{T_j}(k)$

payoff.vanilla.call <- function(u, k) {

pay <- 1 - u ^ (-k)

return(pay)
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}

# Generate a binomial lattice for the look-back call option.

genlattice.american <- function(u, IntRate, NoSteps, n, s) {

OptionPosition <- readline(prompt = "Enter option investor's 

position: buy or sell:")

# The number of tree nodes to process.

count <- sum(1:(NoSteps + 1))

# This data frame will store $W_{T_j}(k)$ as "asset"

# and $W_{t_j}(k)$ as "option".

# The mapping from tree node (i,j) to linear index

# inside the data frame will have to be computed.

# The time and $k$ are also stored.

X <- data.frame(matrix(NA, nrow = count, ncol = 4))

names(X) <- c("asset", "option", "time", "kvalue")

# Option price discount factor.

# Here the IntRate is the expected return for only onestep

DiscountFactor <- 1 / (1 + IntRate)

#The NPI probability.

p <- 0

# Compute the $W$ founction binomial tree, starting from the

last node of the tree, which is its bottom right corner

when viewed as a graph.

# Work up and backwards.

for (i in NoSteps:0) {

for (j in i:0) {

X$asset[count] <- 1 - u ^ (j - i)

if (i == NoSteps) {

X$option[count] <- X$asset[count]

} else{

if (j == i) {

down <- X$option[sum(1:(i + 2))]
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} else{

down <- X$option[sum(1:(i + 1), j + 1, 2)]

}

if (OptionPosition == "buy") {

p <- (s + i - j) / (n + i + 1)

} else if (OptionPosition == "sell") {

p <- (s + i - j + 1) / (n + i + 1)

}

up <- X$option[sum(1:(1 + i), j, 1)]

X$option[count] <- DiscountFactor * (p * up + (1 - p) *

down)

}

X$time[count] <- i

X$kvalue[count] <- i - j

count <- count - 1

}

}

return(X)

}

# Generates a graph specification that can be fed into graphviz.

dotlattice <- function(S, digits = 2) {

shape <- "plaintext"

cat("digraph G {", "\n", sep = "")

cat("node[shape=", shape, "];", "\n", sep = "")

cat("rankdir=LR;", "\n")

cat("edge[arrowhead=none];", "\n")

# Create a dot node for each element in the lattice

for (i in 1:nrow(S)) {
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x <- round(S$option[i], digits = digits)

y <- round(S$time[i], digits = digits)

z <- round(S$kvalue[i], digits = digits)

cat("node", i, "[", "label=\"", x, ", ", "(", z, ",", y, ")"

, "\"];", "\n", sep = "")

}

# The number of levels in a binomial lattice of length L is

`$\frac{\sqrt{8N+1}-1}{2}$`

L <- ((sqrt(8 * nrow(S) + 1) - 1) / 2 - 1)

k <- 1

for (i in 1:L) {

tabs <- rep("\t", i - 1)

j <- i

while (j > 0) {

cat("node", k, "->", "node", (k + i), ";\n", sep = "")

cat("node", k, "->", "node", (k + i + 1), ";\n", sep = "")

k <- k + 1

j <- j - 1

}

}

cat("}", sep = "")

}

#Plot the binomial tree of thelook-back call option in file

lattice.dot.

treedot <- function(u, IntRate, NoSteps, n, s) {

x <- genlattice.american(u, IntRate, NoSteps, n, s)

y <- capture.output(dotlattice(x, digits = 3))

cat(y, file = "lattice.dot")

}
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# Terminal: dot -Tpng -o binomial-tree-american -call-1.png /...

the path where you save lattice.dot
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